Special Focus Session

Magnetic resonance (MR) imaging of articular cartilage is important in evaluation of new surgical and pharmacologic treatments for cartilage damage. Many techniques exist for MR imaging of articular cartilage. Standard techniques for morphologic imaging of cartilage include fast spin-echo and spoiled gradient-echo imaging. These methods provide high-resolution morphologic images of cartilage but are time-consuming in the clinical setting. New methods for faster or higher-resolution morphologic imaging include techniques based on steady-state free precession imaging. These fast techniques will allow detailed evaluation of cartilage in the routine clinical setting. There are also several MR imaging methods that may provide information about the structure and physiology of cartilage. Physiologic imaging may allow detailed evaluation of the glycosaminoglycan matrix or collagen network of articular cartilage and may be the most sensitive method for detection of early changes. With the development of new therap...

[1]  F Eckstein,et al.  Side differences of knee joint cartilage volume, thickness, and surface area, and correlation with lower limb dominance--an MRI-based study. , 2002, Osteoarthritis and cartilage.

[2]  Dwight G Nishimura,et al.  Comparison of new sequences for high‐resolution cartilage imaging , 2003, Magnetic resonance in medicine.

[3]  D. Disler,et al.  Magnetic Resonance Imaging of Articular Cartilage , 2001, Clinical orthopaedics and related research.

[4]  D. Disler,et al.  MR imaging of articular cartilage , 2000, Skeletal Radiology.

[5]  A. Wilson,et al.  Usefulness of turbo spin-echo MR imaging in the evaluation of meniscal tears: comparison with a conventional spin-echo sequence. , 1996, AJR. American journal of roentgenology.

[6]  D. Mitchell,et al.  Chondromalacia patellae: an in vitro study , 1996, Skeletal Radiology.

[7]  G. Bentley,et al.  Treating joint damage in young people , 2000, BMJ : British Medical Journal.

[8]  J J Anderson,et al.  Defining radiographic osteoarthritis for the whole knee. , 1997, Osteoarthritis and cartilage.

[9]  Van,et al.  Spatial variation of T2 in human articular cartilage. , 1997, Radiology.

[10]  W. Palmer,et al.  Knee arthrography. Evolution and current status. , 1998, Radiologic clinics of North America.

[11]  J. Peyron Epidemiological aspects of osteoarthritis. , 1988, Scandinavian journal of rheumatology. Supplement.

[12]  J. Pauly,et al.  MR imaging of knee cartilage with FEMR , 2002, Skeletal Radiology.

[13]  D. Disler,et al.  Clinical magnetic resonance imaging of articular cartilage. , 1998, Topics in magnetic resonance imaging : TMRI.

[14]  Norbert J Pelc,et al.  Rapid MR imaging of articular cartilage with steady-state free precession and multipoint fat-water separation. , 2003, AJR. American journal of roentgenology.

[15]  C F Beaulieu,et al.  MR imaging of articular cartilage of the knee: new methods using ultrashort TEs. , 1998, AJR. American journal of roentgenology.

[16]  O. Sangha Epidemiology of rheumatic diseases. , 2000, Rheumatology.

[17]  W. Garrett Evaluation and treatment of the arthritic knee. , 2003, The Journal of bone and joint surgery. American volume.

[18]  V J Schmithorst,et al.  Spatial variation in cartilage T2 of the knee , 2001, Journal of magnetic resonance imaging : JMRI.

[19]  D. Burstein,et al.  Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI , 1999, Magnetic resonance in medicine.

[20]  J Listerud,et al.  Thin-section, three-dimensional Fourier transform, steady-state free precession MR imaging of the brain. , 1992, Radiology.

[21]  T J Mosher,et al.  Human articular cartilage: influence of aging and early symptomatic degeneration on the spatial variation of T2--preliminary findings at 3 T. , 2000, Radiology.

[22]  D W Piraino,et al.  Fat suppressed MRI of articular cartilage with a spatial‐spectral excitation pulse , 1998, Journal of magnetic resonance imaging : JMRI.

[23]  A. Borthakur,et al.  Sodium visibility and quantitation in intact bovine articular cartilage using high field (23)Na MRI and MRS. , 2000, Journal of magnetic resonance.

[24]  Y. Xia,et al.  Biochemical (and functional) imaging of articular cartilage. , 2001, Seminars in musculoskeletal radiology.

[25]  R. Jackson,et al.  The results of arthroscopic lavage and debridement of osteoarthritic knees based on the severity of degeneration: a 4- to 6-year symptomatic follow-up. , 2003, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[26]  J. B. Kneeland,et al.  Sodium MRI of human articular cartilage in vivo , 1998, Magnetic resonance in medicine.

[27]  M. A. Davis Epidemiology of osteoarthritis. , 1988, Clinics in geriatric medicine.

[28]  G. Glover,et al.  Short TE MR Microscopy: Accurate measurement and zonal differentiation of normal hyaline cartilage , 1997, Magnetic resonance in medicine.

[29]  D G Disler,et al.  Magnetic resonance imaging of articular cartilage of the knee. , 2001, The Journal of the American Academy of Orthopaedic Surgeons.

[30]  F. Cicuttini,et al.  Compartment differences in knee cartilage volume in healthy adults. , 2002, The Journal of rheumatology.

[31]  Poole Ar,et al.  An introduction to the pathophysiology of osteoarthritis. , 1999, Frontiers in bioscience : a journal and virtual library.

[32]  T. Hammad Structure modification in knee osteoarthritis: methodology and outcome parameters. , 2001, Osteoarthritis and cartilage.

[33]  R. Meuli,et al.  Comparison between magnetic resonance imaging and arthroscopy in the diagnosis of patellar cartilage lesions , 1995, Knee Surgery, Sports Traumatology, Arthroscopy.

[34]  D G Disler,et al.  Fat-suppressed three-dimensional spoiled gradient-recalled MR imaging: assessment of articular and physeal hyaline cartilage. , 1997, AJR. American journal of roentgenology.

[35]  Becker Ed,et al.  Driven equilibrium Fourier transform spectroscopy. A new method for nuclear magnetic resonance signal enhancement. , 1969 .

[36]  D. Uebelhart,et al.  Rofecoxib improves quality of life in patients with hip or knee osteoarthritis. , 2002, Swiss medical weekly.

[37]  H. Genant,et al.  Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. , 1999, AJR. American journal of roentgenology.

[38]  W. B. Berg Pathophysiology of osteoarthritis. , 2000 .

[39]  D. Felson Validating markers in osteoarthritis. , 1995, Acta orthopaedica Scandinavica. Supplementum.

[40]  D G Nishimura,et al.  MR imaging of articular cartilage using driven equilibrium , 1999, Magnetic resonance in medicine.

[41]  H. Potter,et al.  Magnetic Resonance Imaging of Articular Cartilage in the Knee. An Evaluation with Use of Fast-Spin-Echo Imaging* , 1998, The Journal of bone and joint surgery. American volume.

[42]  K. T. Scott,et al.  Protocol issues for delayed Gd(DTPA)2–‐enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage , 2001, Magnetic resonance in medicine.

[43]  F Eckstein,et al.  Accuracy of cartilage volume and thickness measurements with magnetic resonance imaging. , 1998, Clinical orthopaedics and related research.

[44]  C F Beaulieu,et al.  Magnetic resonance imaging of knee cartilage repair. , 1998, Topics in magnetic resonance imaging : TMRI.

[45]  T. McCauley MR imaging of chondral and osteochondral injuries of the knee. , 2002, Radiologic clinics of North America.

[46]  D W Piraino,et al.  Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. , 1996, Radiology.

[47]  H. Potter,et al.  T2 quantitation of articular cartilage at 1.5 T , 2003, Journal of magnetic resonance imaging : JMRI.

[48]  H. Roos,et al.  Osteoarthritis of the knee after injury to the anterior cruciate ligament or meniscus: the influence of time and age. , 1995, Osteoarthritis and cartilage.

[49]  F. Cicuttini,et al.  Rate of knee cartilage loss after partial meniscectomy. , 2002, The Journal of rheumatology.

[50]  J. Pauly,et al.  Simultaneous spatial and spectral selective excitation , 1990, Magnetic resonance in medicine.

[51]  C. Peterfy,et al.  Imaging of the disease process , 2002, Current opinion in rheumatology.

[52]  Sharmila Majumdar,et al.  Osteoarthritis: MR imaging findings in different stages of disease and correlation with clinical findings. , 2003, Radiology.

[53]  M. Dougados,et al.  Arthroscopic evaluation of potential structure-modifying drug in osteoarthritis of the knee. A multicenter, randomized, double-blind comparison of tenidap sodium vs piroxicam. , 2003, Osteoarthritis and cartilage.

[54]  D. Disler,et al.  Clinical imaging of articular cartilage in the knee. , 2001, Seminars in musculoskeletal radiology.

[55]  X. Chevalier Autologous chondrocyte implantation for cartilage defects: development and applicability to osteoarthritis. , 2000, Joint, bone, spine : revue du rhumatisme.

[56]  K. Jonsson,et al.  Radiography in osteoarthritis of the knee , 1999, Skeletal Radiology.

[57]  D. Burstein,et al.  Magnetic Resonance Imaging of Relative Glycosaminoglycan Distribution in Patients with Autologous Chondrocyte Transplants , 2001, Investigative radiology.

[58]  D. Burstein,et al.  Determination of fixed charge density in cartilage using nuclear magnetic resonance , 1992, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[59]  L. Fernandes,et al.  Novel strategies for the treatment of osteoarthritis , 2000, Expert opinion on investigational drugs.

[60]  R M Henkelman,et al.  Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage. , 1997, AJR. American journal of roentgenology.

[61]  G. Lust,et al.  Origin of cartilage laminae in MRI , 1997, Journal of magnetic resonance imaging : JMRI.

[62]  P. Dieppe,et al.  Update: treatment of osteoarthritis. , 2002, Arthritis and rheumatism.

[63]  Y. Xia,et al.  Magic-Angle Effect in Magnetic Resonance Imaging of Articular Cartilage: A Review , 2000, Investigative radiology.

[64]  D Resnick,et al.  Magnetic resonance imaging of articular cartilage: an overview. , 1998, Topics in magnetic resonance imaging : TMRI.

[65]  C F Beaulieu,et al.  Future of MR imaging of articular cartilage. , 2001, Seminars in musculoskeletal radiology.

[66]  F. Snaps,et al.  Comparison of spin echo, gradient echo and fat saturation magnetic resonance imaging sequences for imaging the canine elbow. , 1998, Veterinary radiology & ultrasound : the official journal of the American College of Veterinary Radiology and the International Veterinary Radiology Association.

[67]  Kneeland Jb MRI probes biophysical structure of cartilage. , 1996 .

[68]  M. Bronskill,et al.  Anisotropy of NMR properties of tissues , 1994, Magnetic resonance in medicine.

[69]  J. Hodler,et al.  Current status of imaging of articular cartilage , 1996, Skeletal Radiology.

[70]  J S Lewin,et al.  Invited. Remember true FISP? a high SNR, near 1‐second imaging method for T2‐like contrast in interventional MRI at .2 T , 1998, Journal of magnetic resonance imaging : JMRI.

[71]  C. S. Poon,et al.  Practical T2 quantitation for clinical applications , 1992, Journal of magnetic resonance imaging : JMRI.