Interactive Reaction-Diffusion on Surface Tiles

This paper proposes to perform reaction-diffusion on surface tiles. The square tiles fit nicely and cost-effectively in GPU memory, whereas we also apply distortion minimization on tiles so as to precisely reduce the unbalanced scale and resolution problem of chemicals in the reaction- diffusion. The interconnection nature of tiles accounts for the surface topology, and thus allows the chemicals to flow naturally over surfaces of arbitrary genus. Furthermore, by taking advantage of the tile structure, we can efficiently perform localized reaction-diffusion, and adjust the pattern formulation in an interactive manner on the GPU. To demonstrate its performance, we develop an interactive system that allows texture designers to fine-tune and alter the reaction-diffusion process by directly painting chemicals onto the object surface. Finally, we also develop several non-trivial applications of reaction-diffusion, including the geometry-dependent reaction-diffusion and deformation-aware reaction-diffusion.

[1]  Przemyslaw Prusinkiewicz,et al.  Modeling seashells , 1992, SIGGRAPH.

[2]  Greg Turk,et al.  Generating textures on arbitrary surfaces using reaction-diffusion , 1991, SIGGRAPH.

[3]  Robert Michael Kirby,et al.  Display of vector fields using a reaction-diffusion model , 2004, IEEE Visualization 2004.

[4]  Cindy Grimm,et al.  Sketching reaction-diffusion texture , 2006, SBM'06.

[5]  Jingyi Jin,et al.  Parameterization of triangle meshes over quadrilateral domains , 2004, SGP '04.

[6]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[7]  Robert Michael Kirby,et al.  Advanced Reaction-Diffusion Models for Texture Synthesis , 2006, J. Graph. Tools.

[8]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[9]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH 2006.

[10]  Jos Stam,et al.  Flows on surfaces of arbitrary topology , 2003, ACM Trans. Graph..

[11]  Andrew Witkin,et al.  Reaction-diffusion textures , 1991, SIGGRAPH.

[12]  Peter Chambers,et al.  Visualization of solid reaction-diffusion systems , 1995, IEEE Computer Graphics and Applications.

[13]  H. Meinhardt Models of biological pattern formation , 1982 .

[14]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[15]  Gordon L. Kindlmann,et al.  Strategies for Direct Volume Rendering of Diffusion Tensor Fields , 2000, IEEE Trans. Vis. Comput. Graph..

[16]  J. Bard,et al.  A model for generating aspects of zebra and other mammalian coat patterns. , 1981, Journal of theoretical biology.

[17]  Eugene Fiume,et al.  Depicting fire and other gaseous phenomena using diffusion processes , 1995, SIGGRAPH.

[18]  David H. Laidlaw,et al.  Cellular texture generation , 1995, SIGGRAPH.

[19]  Anselmo Lastra,et al.  Physically-based visual simulation on graphics hardware , 2002, HWWS '02.

[20]  Paolo Cignoni,et al.  PolyCube-Maps , 2004, SIGGRAPH 2004.

[21]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.