Expansions for Markov-modulated systems and approximations of ruin probability

Let N be a stationary Markov-modulated marked point process on R with intensity β* and consider a real-valued functional ψ(N). In this paper we study expansions of the form Eψ(N)=a 0 + β*a 1 +...+ (β*) n a n +o((β*) n ) for β*→0. Formulas for the coefficients a i are derived in terms of factorial moment measures of N. We compute a 1 and a 2 for the probability of ruin ? u with initial capital u for the risk process in the Markov-modulated environment ; a 0 = 0. Moreover, we give a sufficient condition for ? u to be an analytic function of β*. We allow the premium rate function p(x) to depend on the actual risk reserve.

[1]  M. Rudemo Point processes generated by transitions of Markov chains , 1973 .

[2]  Martin I. Reiman,et al.  Open Queueing Systems in Light Traffic , 1989, Math. Oper. Res..

[3]  D. Daley,et al.  Light traffic approximations in many-server queues , 1992, Advances in Applied Probability.

[4]  Peter Breeze,et al.  Point Processes and Their Statistical Inference , 1991 .

[5]  Czesaw Ryll-Nardzewski,et al.  Remarks on Processes of Calls , 1961 .

[6]  S. Asmussen Light Traffic Equivalence in Single-Server Queues , 1992 .

[7]  Donald R. Smith,et al.  An Asymptotic Analysis of a Queueing System with Markov-Modulated Arrivals , 1986, Oper. Res..

[8]  P. Brémaud,et al.  Virtual customers in sensitivity and light traffic analysis via Campbell's formula for point processes , 1993, Advances in Applied Probability.

[9]  M. Zazanis Analyticity of Poisson-driven stochastic systems , 1992, Advances in Applied Probability.

[10]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[11]  Bartlomiej Blaszczyszyn,et al.  Queues in Series in Light Traffic , 1993 .

[12]  J. Michael Harrison,et al.  The Recurrence Classification of Risk and Storage Processes , 1978, Math. Oper. Res..

[13]  Bartlomiej Blaszczyszyn,et al.  Factorial moment expansion for stochastic systems , 1995 .

[14]  S. Asmussen Risk theory in a Markovian environment , 1989 .

[15]  Alan Weiss,et al.  Light traffic derivatives via likelihood ratios , 1989, IEEE Trans. Inf. Theory.

[16]  Karl Sigman,et al.  Light traffic for workload in queues , 1992, Queueing Syst. Theory Appl..

[17]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[18]  Søren Asmussen,et al.  Ladder heights and the Markov-modulated M/G/1 queue☆ , 1991 .

[19]  Tomasz Rolski,et al.  Light traffic approximations in general stationary single-server queues , 1994 .

[20]  Volker Schmidt,et al.  Light-Traffic Analysis for Queues with Spatially Distributed Arrivals , 1996, Math. Oper. Res..

[21]  Søren Asmussen,et al.  Ruin probabilities expressed in terms of storage processes , 1988, Advances in Applied Probability.

[22]  Tomasz Rolski,et al.  Light Traffic Approximations in Queues , 1991, Math. Oper. Res..

[23]  Alan F. Karr,et al.  Point Processes and Their Statistical Inference , 1991 .

[24]  J. Grandell Doubly stochastic Poisson processes , 1976 .

[25]  Mogens Bladt,et al.  Phase-type distributions and risk processes with state-dependent premiums , 1996 .