Electropermanent magnetic connectors and actuators: devices and their application in programmable matter

Programmable matter is a digital material having computation, sensing, and actuation capabilities as continuous properties active over its whole extent. To make programmable matter economical to fabricate, we want to use electromagnetic direct drive, rather than clockwork, to actuate the particles. Previous attempts to fabricate small scale (below one centimeter) robotic systems with electromagnetic direct-drive have typically run into problems with insufficient force or torque, excessive power consumption and heat generation (for magnetic-drive systems), or high-voltage requirements, humidity sensitivity, and air breakdown. (for electrostatic-drive systems) The electropermanent magnet is a solid-state device whose external magnetic flux can be stably switched on and off by a discrete electrical pulse. Electropermanent magnets can provide low-power connection and actuation for programmable matter and other small-scale robotic systems. The first chapter covers the electropermanent magnet, its physics, scaling, fabrication, and our experimental device performance data. The second introduces the idea of electropermanent actuators, covers their fundamental limits and scaling, and shows prototype devices and performance measurements. The third chapter describes the smart pebbles system, which consists of 12-mm cubes that can form shapes by stochastic self-assembly and self-disassembly. The fourth chapter describes the millibot, a continuous chain of programmable matter which forms shapes by folding. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

[1]  J. Andrew Yeh,et al.  Electrical breakdown phenomena for devices with micron separations , 2006 .

[2]  Stephen C. Jacobsen,et al.  The wobble motor: design, fabrication and testing of an eccentric-motion electrostatic microactuator , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[3]  L. Penrose,et al.  A Self-reproducing Analogue , 1957, Nature.

[4]  Dan Ferber,et al.  Synthetic biology. Microbes made to order. , 2004, Science.

[5]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[6]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[7]  Byoung Kwon An Em-cube: cube-shaped, self-reconfigurable robots sliding on structure surfaces , 2008, 2008 IEEE International Conference on Robotics and Automation.

[8]  Michael F. Ashby,et al.  Actuator Classification and Selection—The Development of a Database , 2002 .

[9]  V. Michael Bove,et al.  Programming a paintable computer , 2002 .

[10]  J. Lang,et al.  An electrostatic induction micromotor supported on gas-lubricated bearings , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[11]  Paolo Dario,et al.  A mobile microrobot actuated by a new electromagnetic wobble micromotor , 1998 .

[12]  Ingegneria Chimica,et al.  Microelectrodeposition of Co/Pt alloys for micromagnetic applications , 2003 .

[13]  P. Campbell,et al.  A model of anisotropic Alnico magnets for field computation , 1982 .

[14]  Hermann A. Haus,et al.  Electromagnetic Fields And Energy , 1989 .

[15]  Toshiki Niino,et al.  A high-power electrostatic motor using skewed electrodes , 1999 .

[16]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[17]  Anita M. Flynn,et al.  Piezoelectric ultrasonic micromotors , 1995 .

[18]  Charles G. Sodini,et al.  Microelectronics: An Integrated Approach , 1996 .

[19]  Lester R. Moskowitz,et al.  Permanent magnet design and application handbook , 1976 .

[20]  M. Kurosawa,et al.  Ultrasonic motors , 1988, IEEE 1988 Ultrasonics Symposium Proceedings..

[21]  Ying Zhang,et al.  Connecting and disconnecting for chain self-reconfiguration with PolyBot , 2002 .

[22]  S. Senturia Microsystem Design , 2000 .

[23]  Yu-Chong Tai,et al.  IC-processed electrostatic micro-motors , 1988, Technical Digest., International Electron Devices Meeting.

[24]  Mark R. Cutkosky,et al.  Smooth Vertical Surface Climbing With Directional Adhesion , 2008, IEEE Transactions on Robotics.

[25]  R. Feynman There’s plenty of room at the bottom , 2011 .

[26]  L. Penrose,et al.  Self-Reproducing Machines , 1959 .

[27]  Ara N. Knaian,et al.  Design of programmable matter , 2008 .

[28]  A. H. Slocum,et al.  Precision machine design: macromachine design philosophy and its applicability to the design of micromachines , 1992, [1992] Proceedings IEEE Micro Electro Mechanical Systems.

[29]  Iuliu Vasilescu,et al.  Miche: Modular Shape Formation by Self-Disassembly , 2008, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[30]  Saul Griffith,et al.  Robotics: Self-replication from random parts , 2005, Nature.

[31]  Mark Yim,et al.  PolyBot: a modular reconfigurable robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[32]  Seth Copen Goldstein,et al.  Electrostatic latching for inter-module adhesion, power transfer, and communication in modular robots , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[33]  M. Madou Fundamentals of microfabrication : the science of miniaturization , 2002 .

[34]  Koichi Suzumori,et al.  Micro electrostatic wobble motor with toothed electrodes , 1997, Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.

[35]  Henrik Hautop Lund,et al.  Design of the ATRON lattice-based self-reconfigurable robot , 2006, Auton. Robots.

[36]  Hod Lipson,et al.  Stochastic self-reconfigurable cellular robotics , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[37]  T. Higuchi,et al.  Dual excitation multiphase electrostatic drive , 1995, IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting.

[38]  W. McCarthy Programmable matter , 2000, Nature.

[39]  Seth Copen Goldstein,et al.  Beyond Audio and Video: Using Claytronics to Enable Pario , 2009, AI Mag..

[40]  Gang Zhang,et al.  EFAB: low-cost automated electrochemical batch fabrication of arbitrary 3D microstructures , 1999, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[41]  Sawyer B. Fuller,et al.  Ink-jet printed nanoparticle microelectromechanical systems , 2002 .

[42]  Mark G. Allen,et al.  A planar variable reluctance magnetic micromotor with fully integrated stator and coils , 1993 .

[43]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[44]  Eiichi Yoshida,et al.  M-TRAN: self-reconfigurable modular robotic system , 2002 .

[45]  N. Gershenfeld The Physics Of Information Technology , 2000 .

[46]  Tian Jian Lu,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering Mems Actuators and Sensors: Observations on Their Performance and Selection for Purpose , 2022 .

[47]  Alexander Feiner,et al.  The ferreed — A new switching device , 1960 .

[48]  Seth Copen Goldstein,et al.  Stress-driven MEMS assembly + electrostatic forces = 1mm diameter robot , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[49]  Martin Nilsson Heavy-duty connectors for self-reconfiguring robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[50]  James Dillon Cobine,et al.  Gaseous conductors : theory and engineering applications , 1958 .

[51]  S. Manalis,et al.  Weighing of biomolecules, single cells and single nanoparticles in fluid , 2007, Nature.

[52]  Daniela Rus,et al.  Robot pebbles: One centimeter modules for programmable matter through self-disassembly , 2010, 2010 IEEE International Conference on Robotics and Automation.

[53]  Alan H. Epstein,et al.  AN INFORMAL SURVEY OF POWER MEMS , 2003 .

[54]  Eiichi Yoshida,et al.  Self-reconfigurable modular robot (M-TRAN) and its motion design , 2002, 7th International Conference on Control, Automation, Robotics and Vision, 2002. ICARCV 2002..

[55]  G. Noakes,et al.  College Physics , 1945, Nature.

[56]  Jeffrey B. Sampsell,et al.  Digital micromirror device and its application to projection displays , 1994 .

[57]  Joseph M. Kahn,et al.  An autonomous 16 mm/sup 3/ solar-powered node for distributed wireless sensor networks , 2002, Proceedings of IEEE Sensors.

[58]  Neil Gershenfeld,et al.  FAB: The Coming Revolution on Your Desktop--from Personal Computers to Personal Fabrication , 2005 .

[59]  Daniela Rus,et al.  Miche: Modular Shape Formation by Self-Dissasembly , 2007, ICRA.

[60]  Tom Quirk,et al.  There’s Plenty of Room at the Bottom , 2006, Size Really Does Matter.

[61]  K. Eric Drexler,et al.  Engines of Creation: the Coming Era of Nanotechnology , 1986 .

[62]  M. Sitti,et al.  Gecko-inspired directional and controllable adhesion. , 2008, Small.

[63]  Toshio Fukuda,et al.  Dynamically reconfigurable robotic system , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[64]  Toshiiku Sashida,et al.  An Introduction to Ultrasonic Motors , 1994 .

[65]  Wei-Min Shen,et al.  Highly compliant and self-tightening docking modules for precise and fast connection of self-reconfigurable robots , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[66]  Seth Copen Goldstein,et al.  A modular robotic system using magnetic force effectors , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[67]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[68]  Michael J. Anderson,et al.  Efficiency of energy conversion for devices containing a piezoelectric component , 2004 .

[69]  R. Parker,et al.  Permanent Magnets and Their Applications , 1962 .

[70]  Daniela Rus,et al.  Locomotion versatility through self-reconfiguration , 1999, Robotics Auton. Syst..

[71]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[72]  A. Slocum,et al.  Precision Machine Design , 1992 .

[73]  Kimberly L. Turner,et al.  A Gecko‐Inspired Reversible Adhesive , 2008 .