Transition Metal Oxides as Supercapacitor Materials

[1]  Xiaobo Ji,et al.  Uniform porous spinel NiCo2O4 with enhanced electrochemical performances , 2015 .

[2]  Haihui Wang,et al.  Honeycomb-like NiMoO4 ultrathin nanosheet arrays for high-performance electrochemical energy storage , 2015 .

[3]  Q. Li,et al.  NiMoO4@Co(OH)2 core/shell structure nanowire arrays supported on Ni foam for high-performance supercapacitors , 2015 .

[4]  Zhenxing Zhang,et al.  Three-Dimensional Graphene Supported Nickel Molybdate Nanowires as Novel Ultralight and Flexible Electrode for Supercapacitors , 2015 .

[5]  Q. Li,et al.  NiMoO4 nanowire @ MnO2 nanoflake core/shell hybrid structure aligned on carbon cloth for high-performance supercapacitors , 2015 .

[6]  Xiaobo Ji,et al.  High capacity NiCo2O4 nanorods as electrode materials for supercapacitor , 2014 .

[7]  Jinqing Wang,et al.  Rational construction of three dimensional hybrid Co3O4@NiMoO4 nanosheets array for energy storage application , 2014 .

[8]  Xiaobo Ji,et al.  3D network-like mesoporous NiCo2O4 nanostructures as advanced electrode material for supercapacitors , 2014 .

[9]  Xiaobo Ji,et al.  Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: Understanding of its electrochemical properties , 2014 .

[10]  Zhonghua Hu,et al.  Seaurchin-like hierarchical NiCo2O4@NiMoO4 core-shell nanomaterials for high performance supercapacitors. , 2014, Physical chemistry chemical physics : PCCP.

[11]  Yujin Chen,et al.  Hollow structured and flower-like C@MnCo2O4 composite for high electrochemical performance in a supercapacitor , 2014 .

[12]  Xiaofeng Wang,et al.  Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors , 2014 .

[13]  Q. Li,et al.  High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors , 2014 .

[14]  Xiaobo Ji,et al.  NiCo2O4-based materials for electrochemical supercapacitors , 2014 .

[15]  S. Ding,et al.  Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors , 2014 .

[16]  Wei-bin Zhang,et al.  Design and synthesis of 3D Co3O4@MMoO4 (M=Ni, Co) nanocomposites as high-performance supercapacitor electrodes , 2014 .

[17]  Hongsen Li,et al.  Mesoporous NiCo2O4 Nanowire Arrays Grown on Carbon Textiles as Binder‐Free Flexible Electrodes for Energy Storage , 2014 .

[18]  B. Liu,et al.  Enhanced performance of supercapacitors with ultrathin mesoporous NiMoO4 nanosheets , 2014 .

[19]  Q. Li,et al.  Three-dimensional Co₃O₄@NiMoO₄ core/shell nanowire arrays on Ni foam for electrochemical energy storage. , 2014, ACS applied materials & interfaces.

[20]  Yafei Liu,et al.  Preparation and characterization of flower-like microspheres of nano-NiO as electrode material for supercapacitor , 2014 .

[21]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[22]  Yuxin Zhang,et al.  Facile synthesis of single-crystalline NiO nanosheet arrays on Ni foam for high-performance supercapacitors , 2014 .

[23]  Rujia Zou,et al.  Hierarchical mesoporous NiCo2O4@MnO2 core–shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors , 2014 .

[24]  Jianjun Jiang,et al.  Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors , 2014 .

[25]  X. Lou,et al.  Mixed transition-metal oxides: design, synthesis, and energy-related applications. , 2014, Angewandte Chemie.

[26]  Zeheng Yang,et al.  Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application , 2014 .

[27]  Xiaobo Ji,et al.  Amorphous RuO2 coated on carbon spheres as excellent electrode materials for supercapacitors , 2014 .

[28]  B. Liu,et al.  Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. , 2013, ACS applied materials & interfaces.

[29]  Xiaobo Ji,et al.  A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge , 2013 .

[30]  Zhong Lin Wang,et al.  Hybrid composite Ni(OH)2@NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors. , 2013, ACS applied materials & interfaces.

[31]  Usman Ali Rana,et al.  Synthesis of hierarchical porous spinel nickel cobaltite nanoflakes for high performance electrochemical energy storage supercapacitors , 2013 .

[32]  Yehui Zhang,et al.  Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor , 2013 .

[33]  Xiaogang Zhang,et al.  Template-engaged synthesis of uniform mesoporous hollow NiCo2O4 sub-microspheres towards high-performance electrochemical capacitors , 2013 .

[34]  Q. Li,et al.  High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes. , 2013, Nanoscale.

[35]  Chi-Chang Hu,et al.  Microwave-assisted hydrothermal annealing of binary Ni–Co oxy-hydroxides for asymmetric supercapacitors , 2013 .

[36]  Guanhua Zhang,et al.  Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors , 2013 .

[37]  Yun‐Sung Lee,et al.  Synthesis and improved electrochemical performances of nano β-NiMoO4–CoMoO4·xH2O composites for asymmetric supercapacitors , 2013 .

[38]  Xinhua Li,et al.  Flexible supercapacitor based on MnO2 nanoparticles via electrospinning , 2013 .

[39]  Yihua Gao,et al.  Solid-State High Performance Flexible Supercapacitors Based on Polypyrrole-MnO2-Carbon Fiber Hybrid Structure , 2013, Scientific Reports.

[40]  Q. Li,et al.  NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors , 2013 .

[41]  Taihong Wang,et al.  Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors. , 2013, ACS applied materials & interfaces.

[42]  Rujia Zou,et al.  Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors , 2013 .

[43]  Hongyu Wang,et al.  Hydrothermal and soft-templating synthesis of mesoporous NiCo2O4 nanomaterials for high-performance electrochemical capacitors , 2013, Journal of Applied Electrochemistry.

[44]  Yang Li,et al.  Synthesis of graphene–NiFe2O4 nanocomposites and their electrochemical capacitive behavior , 2013 .

[45]  Shengjie Peng,et al.  Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors. , 2013, Chemistry.

[46]  M. Ger,et al.  Microwave-assisted hydrothermal synthesis of spinel nickel cobaltite and application for supercapacitors , 2013 .

[47]  Mark Asta,et al.  Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations. , 2013, Accounts of chemical research.

[48]  Genqiang Zhang,et al.  Controlled Growth of NiCo2O4 Nanorods and Ultrathin Nanosheets on Carbon Nanofibers for High-performance Supercapacitors , 2013, Scientific Reports.

[49]  G. Muralidharan,et al.  Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. , 2013, ACS applied materials & interfaces.

[50]  C. Sanjeeviraja,et al.  Synthesis and physico-chemical property evaluation of PANI–NiFe2O4 nanocomposite as electrodes for supercapacitors , 2013 .

[51]  Craig E Banks,et al.  Graphene ultracapacitors: structural impacts. , 2013, Physical chemistry chemical physics : PCCP.

[52]  Pengyi Tang,et al.  High performance asymmetric supercapacitor based on MnO2 electrode in ionic liquid electrolyte , 2013 .

[53]  L. Kong,et al.  Effect of surfactant on the morphology and capacitive performance of porous NiCo2O4 , 2013, Journal of Solid State Electrochemistry.

[54]  S. Selladurai,et al.  Sonochemically precipitated spinel Co3O4 and NiCo2O4 nanostructures as an electrode materials for supercapacitor , 2013 .

[55]  A. Hirata,et al.  Enhanced supercapacitor performance of MnO2 by atomic doping. , 2013, Angewandte Chemie.

[56]  Jiaoyang Li,et al.  Ultrathin Mesoporous NiCo2O4 Nanosheets Supported on Ni Foam as Advanced Electrodes for Supercapacitors , 2012 .

[57]  Pooi See Lee,et al.  Dodecyl sulfate-induced fast faradic process in nickel cobalt oxide–reduced graphite oxide composite material and its application for asymmetric supercapacitor device , 2012 .

[58]  L. Kong,et al.  A sol-gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors. , 2012, ACS applied materials & interfaces.

[59]  Pooi See Lee,et al.  Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application , 2012 .

[60]  N. Yusof,et al.  Structural and electrochemical properties of manganese substituted nickel cobaltite for supercapacitor application , 2012 .

[61]  M. Chan-Park,et al.  3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. , 2012, ACS nano.

[62]  Xiaobo Ji,et al.  Graphene electrochemical supercapacitors: the influence of oxygen functional groups. , 2012, Chemical communications.

[63]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[64]  Haijiao Zhang,et al.  Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors , 2011 .

[65]  Xiaobo Ji,et al.  Electrochemical capacitors utilising transition metal oxides: an update of recent developments , 2011 .

[66]  D. Tsai,et al.  A nanostructured electrode of IrOx foil on the carbon nanotubes for supercapacitors , 2011, Nanotechnology.

[67]  X. Chen,et al.  Sol―gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors , 2011 .

[68]  Xiuli Wang,et al.  Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance , 2011 .

[69]  Heejoon Ahn,et al.  Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications , 2011 .

[70]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[71]  K. Lee,et al.  Preparation and characterization of iridium dioxide–carbon nanotube nanocomposites for supercapacitors , 2011, Nanotechnology.

[72]  B. Jang,et al.  Graphene-based supercapacitor with an ultrahigh energy density. , 2010, Nano letters.

[73]  C. Hwang,et al.  Growth of RuO2 Thin Films by Pulsed-Chemical Vapor Deposition Using RuO4 Precursor and 5% H2 Reduction Gas , 2010 .

[74]  Yanhui Yang,et al.  Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes , 2010 .

[75]  Lili Zhang,et al.  Template Synthesis of Tubular Ruthenium Oxides for Supercapacitor Applications , 2010 .

[76]  Pintu Sen,et al.  Electrochemical performances of poly(3,4-ethylenedioxythiophene)–NiFe2O4 nanocomposite as electrode for supercapacitor , 2010 .

[77]  Yiying Wu,et al.  NixCo3−xO4 Nanowire Arrays for Electrocatalytic Oxygen Evolution , 2010, Advanced materials.

[78]  G. R. Rao,et al.  Tuning of Capacitance Behavior of NiO Using Anionic, Cationic, and Nonionic Surfactants by Hydrothermal Synthesis , 2010 .

[79]  Shih‐Yuan Lu,et al.  A Cost‐Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxide‐Driven Sol–Gel Process , 2010, Advanced materials.

[80]  Cunjiang Yu,et al.  Stretchable Supercapacitors Based on Buckled Single‐Walled Carbon‐Nanotube Macrofilms , 2009, Advanced materials.

[81]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[82]  Hong Lin,et al.  Photophysical and Photocatalytic Properties of Core-Ring Structured NiCo2O4 Nanoplatelets , 2009 .

[83]  Yitai Qian,et al.  Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. , 2009, Chemistry.

[84]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[85]  Jinhua Jiang,et al.  Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials , 2008 .

[86]  Jingsong Huang,et al.  A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. , 2008, Chemistry.

[87]  Yen‐Po Lin,et al.  Investigation on capacity fading of aqueous MnO2·nH2O electrochemical capacitor , 2008 .

[88]  P. Taberna,et al.  Relation between the ion size and pore size for an electric double-layer capacitor. , 2008, Journal of the American Chemical Society.

[89]  Markus Niederberger,et al.  Nonaqueous sol-gel routes to metal oxide nanoparticles. , 2007, Accounts of chemical research.

[90]  Jinhua Chen,et al.  Preparation and capacitive properties of cobalt–nickel oxides/carbon nanotube composites , 2007 .

[91]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[92]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[93]  Gaoping Cao,et al.  Characterization of sol–gel-derived NiOx xerogels as supercapacitors , 2006 .

[94]  V. Ruiz,et al.  Activated carbon produced from Sasol-Lurgi gasifier pitch and its application as electrodes in supercapacitors , 2006 .

[95]  P. Ajayan,et al.  Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. , 2005, The journal of physical chemistry. B.

[96]  Chi-Chang Hu,et al.  The electrochemical characteristics of binary manganese–cobalt oxides prepared by anodic deposition , 2005 .

[97]  Qing Yang,et al.  Synthesis of NiO nanowires by a sol-gel process , 2005 .

[98]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[99]  W. Sugimoto,et al.  Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. , 2005, The journal of physical chemistry. B.

[100]  Brian E. Conway,et al.  Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices , 2003 .

[101]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[102]  S. Feng,et al.  New materials in hydrothermal synthesis. , 2001, Accounts of chemical research.

[103]  J. L. Gautier,et al.  Characterization of the Nickel Cobaltite, NiCo2O4, Prepared by Several Methods: An XRD, XANES, EXAFS, and XPS Study , 2000 .

[104]  M. Musiani Electrodeposition of composites: an expanding subject in electrochemical materials science , 2000 .

[105]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[106]  M. Anderson,et al.  Novel Electrode Materials for Thin‐Film Ultracapacitors: Comparison of Electrochemical Properties of Sol‐Gel‐Derived and Electrodeposited Manganese Dioxide , 2000 .

[107]  J. Patel,et al.  Growth, microstructure, and resistivity of RuO_2 thin films grown by metal-organic chemical vapor deposition , 1998 .

[108]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[109]  B. Conway Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage , 1991 .

[110]  Larry L. Hench,et al.  The sol-gel process , 1990 .

[111]  D. B. Hibbert,et al.  A MECHANISTIC STUDY OF OXYGEN EVOLUTION ON NICKEL COBALT OXIDE (NICO2O4). I. FORMATION OF HIGHER OXIDES , 1982 .

[112]  D. B. Hibbert,et al.  A Mechanistic Study of Oxygen Evolution on NiCo2 O 4 I . Formation of Higher Oxides , 1982 .

[113]  S. Trasatti,et al.  Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour , 1971 .

[114]  Xiaobo Ji,et al.  Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor , 2015 .

[115]  X. Lou,et al.  Controlled Growth of NiMoO4 Nanosheet and Nanorod Arrays on Various Conductive Substrates as Advanced Electrodes for Asymmetric Supercapacitors , 2015 .

[116]  S. Zhang,et al.  Hierarchical nanosheet-based NiMoO4 nanotubes: synthesis and high supercapacitor performance , 2015 .

[117]  Lifang Jiao,et al.  Novel three-dimensional NiCo2O4 hierarchitectures: solvothermal synthesis and electrochemical properties , 2014 .

[118]  F. Walsh,et al.  The specific capacitance of sol–gel synthesised spinel MnCo2O4 in an alkaline electrolyte , 2014 .

[119]  B. Liu,et al.  Facile hydrothermal synthesis of hierarchical ultrathin mesoporous NiMoO4 nanosheets for high performance supercapacitors , 2014 .

[120]  L. Kong,et al.  Design and synthesis of CoMoO4–NiMoO4·xH2O bundles with improved electrochemical properties for supercapacitors , 2013 .

[121]  J. Tu,et al.  Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material , 2011 .

[122]  A. Best,et al.  Conducting-polymer-based supercapacitor devices and electrodes , 2011 .

[123]  G. Chen,et al.  The measurement of specific capacitances of conducting polymers using the quartz crystal microbalance , 2008 .

[124]  Jim P. Zheng,et al.  A New Charge Storage Mechanism for Electrochemical Capacitors , 1995 .

[125]  Clément Sanchez,et al.  Sol-gel chemistry of transition metal oxides , 1988 .