The power of noisy fermionic quantum computation

We consider the realization of universal quantum computation through braiding of Majorana fermions supplemented by unprotected preparation of noisy ancillae. It has been shown by Bravyi (2006 Phys. Rev. A 73 042313) that under the assumption of perfect braiding operations, universal quantum computation is possible if the noise rate on a particular four-fermion ancilla is below 40%. We show that beyond a noise rate of 89% on this ancilla the quantum computation can be efficiently simulated classically: we explicitly show that the noisy ancilla is a convex mixture of Gaussian fermionic states in this region, while for noise rates below 53% we prove that the state is not a mixture of Gaussian states. These results are obtained by generalizing concepts in entanglement theory to the setting of Gaussian states and their convex mixtures. In particular, we develop a complete set of criteria, namely the existence of a Gaussian-symmetric extension, which determine whether a state is a convex mixture of Gaussian states.

[1]  L. Landau,et al.  Fermionic quantum computation , 2000 .

[2]  M. Lewenstein,et al.  Quantum Correlations in Systems of Indistinguishable Particles , 2002, quant-ph/0203060.

[3]  Reinhard F. Werner,et al.  Implementation of Clifford gates in the Ising-anyon topological quantum computer , 2008, 0812.2338.

[4]  Generalized Hartree-Fock theory and the Hubbard model , 1993, cond-mat/9312044.

[5]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[6]  Mark Fannes,et al.  Quantum Dynamical Systems , 2001 .

[7]  C. Pillet Quantum Dynamical Systems , 2006 .

[8]  P. Parrilo,et al.  Distinguishing separable and entangled states. , 2001, Physical review letters.

[9]  Robert König,et al.  Classical simulation of dissipative fermionic linear optics , 2011, Quantum Inf. Comput..

[10]  L. Muñoz,et al.  ”QUANTUM THEORY OF SOLIDS” , 2009 .

[11]  R. Jozsa,et al.  SEPARABILITY OF VERY NOISY MIXED STATES AND IMPLICATIONS FOR NMR QUANTUM COMPUTING , 1998, quant-ph/9811018.

[12]  R. Werner,et al.  Entanglement measures under symmetry , 2000, quant-ph/0010095.

[13]  J. Cirac,et al.  Generalized Hartree–Fock theory for interacting fermions in lattices: numerical methods , 2010, 1005.5284.

[14]  Mark Howard,et al.  Tight noise thresholds for quantum computation with perfect stabilizer operations. , 2009, Physical review letters.

[15]  Jason Alicea,et al.  New directions in the pursuit of Majorana fermions in solid state systems , 2012, Reports on progress in physics. Physical Society.

[16]  Howard Barnum,et al.  Better bound on the exponent of the radius of the multipartite separable ball (12 pages) , 2005 .

[17]  H. Wenzl On Centralizer Algebras for Spin Representations , 2011, 1107.4183.

[18]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[19]  David P. DiVincenzo,et al.  Classical simulation of noninteracting-fermion quantum circuits , 2001, ArXiv.

[20]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[21]  Sergey Bravyi,et al.  Lagrangian representation for fermionic linear optics , 2004, Quantum Inf. Comput..

[22]  P. Parrilo,et al.  Complete family of separability criteria , 2003, quant-ph/0308032.

[23]  R. Jozsa,et al.  Matchgates and classical simulation of quantum circuits , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  Pablo A. Parrilo,et al.  Complete family of separability criteria (20 pages) , 2004 .

[25]  B. Reichardt Improved magic states distillation for quantum universality , 2004, quant-ph/0411036.

[26]  C. Kraus A Quantum Information Perspective of Fermionic Quantum Many-Body Systems , 2009 .

[27]  Sergey Bravyi Classical capacity of fermionic product channels , 2005 .

[28]  Igor Aharonovich,et al.  Diamond-based single-photon emitters , 2011 .

[29]  J. Cirac,et al.  Pairing in fermionic systems: A quantum-information perspective , 2008, 0810.4772.

[30]  Daniel Loss,et al.  Double-occupancy errors, adiabaticity, and entanglement of spin qubits in quantum dots , 2001 .

[31]  Matthias Christandl,et al.  One-and-a-Half Quantum de Finetti Theorems , 2007 .

[32]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[33]  Sergey Bravyi Universal quantum computation with the v=5/2 fractional quantum Hall state , 2006 .

[34]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[35]  C. Beenakker,et al.  Charge detection enables free-electron quantum computation. , 2004, Physical Review Letters.

[36]  A. Winter,et al.  Higher entropic uncertainty relations for anti-commuting observables , 2007, 0710.1185.

[37]  Alexander Schrijver,et al.  New Limits on Fault-Tolerant Quantum Computation , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[38]  Cambridge,et al.  Multi-Particle Entanglement Purification Protocols , 1997, Technical Digest. 1998 EQEC. European Quantum Electronics Conference (Cat. No.98TH8326).

[39]  Entanglement and permutational symmetry. , 2008, Physical review letters.

[40]  Ben Reichardt,et al.  Quantum Universality from Magic States Distillation Applied to CSS Codes , 2005, Quantum Inf. Process..

[41]  R. Goodman,et al.  Symmetry, Representations, and Invariants , 2009 .