Escaping Local Optima Using Crossover With Emergent Diversity

Population diversity is essential for avoiding premature convergence in genetic algorithms (GAs) and for the effective use of crossover. Yet the dynamics of how diversity emerges in populations are not well understood. We use rigorous runtime analysis to gain insight into population dynamics and GA performance for the ( ${\mu +1}$ ) GA and the Jump test function. We show that the interplay of crossover followed by mutation may serve as a catalyst leading to a sudden burst of diversity. This leads to significant improvements of the expected optimization time compared to mutation-only algorithms like the (1 + 1) evolutionary algorithm. Moreover, increasing the mutation rate by an arbitrarily small constant factor can facilitate the generation of diversity, leading to even larger speedups. Experiments were conducted to complement our theoretical findings and further highlight the benefits of crossover on the function class.

[1]  Thomas Jansen,et al.  The Analysis of Evolutionary Algorithms—A Proof That Crossover Really Can Help , 2002, Algorithmica.

[2]  Pietro Simone Oliveto,et al.  Analysis of population-based evolutionary algorithms for the vertex cover problem , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[3]  Thomas Jansen,et al.  Analyzing Evolutionary Algorithms: The Computer Science Perspective , 2012 .

[4]  Frank Neumann,et al.  Bioinspired computation in combinatorial optimization: algorithms and their computational complexity , 2010, GECCO '12.

[5]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[6]  Pietro Simone Oliveto,et al.  On the effectiveness of crossover for migration in parallel evolutionary algorithms , 2011, GECCO '11.

[7]  Per Kristian Lehre,et al.  Black-box Complexity of Parallel Search with Distributed Populations , 2015, FOGA.

[8]  Dirk Sudholt,et al.  How crossover helps in pseudo-boolean optimization , 2011, GECCO '11.

[9]  Xin Yao,et al.  A study of drift analysis for estimating computation time of evolutionary algorithms , 2004, Natural Computing.

[10]  Carsten Witt,et al.  Runtime Analysis of the ( + 1) EA on Simple Pseudo-Boolean Functions , 2006, Evolutionary Computation.

[11]  Pietro Simone Oliveto,et al.  Analysis of Diversity-Preserving Mechanisms for Global Exploration , 2009, Evolutionary Computation.

[12]  Natalia L. Komarova,et al.  Accelerated crossing of fitness valleys through division of labor and cheating in asexual populations , 2012, Scientific Reports.

[13]  Pietro Simone Oliveto,et al.  Improved time complexity analysis of the Simple Genetic Algorithm , 2015, Theor. Comput. Sci..

[14]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[15]  Duc-Cuong Dang,et al.  Level-Based Analysis of Genetic Algorithms and Other Search Processes , 2014, bioRxiv.

[16]  William F. Punch,et al.  Fast and Efficient Black Box Optimization Using the Parameter-less Population Pyramid , 2015, Evolutionary Computation.

[17]  Duc-Cuong Dang,et al.  Escaping Local Optima with Diversity Mechanisms and Crossover , 2016, GECCO.

[18]  Sam Kwong,et al.  Genetic algorithms: concepts and applications [in engineering design] , 1996, IEEE Trans. Ind. Electron..

[19]  Benjamin Doerr,et al.  Crossover can provably be useful in evolutionary computation , 2008, GECCO '08.

[20]  Marjan Mernik,et al.  Exploration and exploitation in evolutionary algorithms: A survey , 2013, CSUR.

[21]  Benjamin Doerr,et al.  From black-box complexity to designing new genetic algorithms , 2015, Theor. Comput. Sci..

[22]  Sam Kwong,et al.  Genetic algorithms: concepts and applications [in engineering design] , 1996, IEEE Trans. Ind. Electron..

[23]  Anne Auger,et al.  Theory of Randomized Search Heuristics , 2012, Algorithmica.

[24]  Adam Prügel-Bennett,et al.  Benefits of a Population: Five Mechanisms That Advantage Population-Based Algorithms , 2010, IEEE Transactions on Evolutionary Computation.

[25]  Duc-Cuong Dang,et al.  Emergence of Diversity and Its Benefits for Crossover in Genetic Algorithms , 2016, PPSN.

[26]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[27]  Nachol Chaiyaratana,et al.  Effects of diversity control in single-objective and multi-objective genetic algorithms , 2007, J. Heuristics.

[28]  Thomas Jansen,et al.  Analyzing Evolutionary Algorithms , 2015, Natural Computing Series.

[29]  William M. Spears,et al.  Crossover or Mutation? , 1992, FOGA.

[30]  Nick Barton,et al.  Can quantitative and population genetics help us understand evolutionary computation? , 2013, GECCO '13.

[31]  Rasmus K. Ursem,et al.  Diversity-Guided Evolutionary Algorithms , 2002, PPSN.

[32]  Pietro Simone Oliveto,et al.  On the runtime analysis of the Simple Genetic Algorithm , 2014, Theor. Comput. Sci..

[33]  Thomas Jansen,et al.  On the analysis of the (1+1) evolutionary algorithm , 2002, Theor. Comput. Sci..

[34]  Per Kristian Lehre,et al.  Crossover can be constructive when computing unique input–output sequences , 2011, Soft Comput..

[35]  Dirk Sudholt,et al.  Crossover speeds up building-block assembly , 2012, GECCO '12.

[36]  JansenThomas,et al.  On the analysis of the (1+ 1) evolutionary algorithm , 2002 .

[37]  Daniel B. Weissman,et al.  The Rate of Fitness-Valley Crossing in Sexual Populations , 2010, Genetics.

[38]  Pietro Simone Oliveto,et al.  Analysis of diversity mechanisms for optimisation in dynamic environments with low frequencies of change , 2013, GECCO '13.