On Dynamic Properties of Singularity Robust Jacobian Inverse Kinematics

In the technical note we examine dynamic properties of the singularity robust Jacobian inverse kinematics algorithm for mobile manipulators. By design, this algorithm operates at regular as well as singular configurations. The main result of the technical note consists in establishing the completeness of the singularity robust algorithm, and in providing a condition for its convergence. Computer simulations illustrate the theory.

[1]  Héctor J. Sussmann,et al.  Line-Integral Estimates and Motion Planning Using the Continuation Method , 1998 .

[2]  T. Ważewski,et al.  Sur la limitation des intégrales des systèmes d'équations différentielles linéaires ordinaires , 1948 .

[3]  Bruno Siciliano,et al.  Modeling and Control of Robot Manipulators , 1995 .

[4]  Giuseppe Oriolo,et al.  Kinematically Redundant Manipulators , 2008, Springer Handbook of Robotics.

[5]  John T. Wen,et al.  Kinematic path planning for robots with holonomic and nonholonomic constraints , 1998 .

[6]  Krzysztof Tchoń,et al.  Singularity Robust Jacobian Inverse Kinematics for Mobile Manipulators , 2008 .

[7]  T. Ważewski,et al.  Sur l'évaluation du domaine d'existence des fonctions implicites réelles ou complexes , 1948 .

[8]  Janusz Jakubiak,et al.  The continuous inverse kinematic problem for mobile manipulators: a case study in the dynamic extension , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[9]  Krzysztof Tchori,et al.  Instantaneous kinematics and dexterity of mobile manipulators , 2000 .

[10]  Bernard Bayle,et al.  Manipulability of Wheeled Mobile Manipulators , 2003, Int. J. Robotics Res..

[11]  Krzysztof Tchoń,et al.  Endogenous configuration space approach to mobile manipulators: A derivation and performance assessment of Jacobian inverse kinematics algorithms , 2003 .

[12]  Miroslaw Galicki Control-Based Solution to Inverse Kinematics for Mobile Manipulators Using Penalty Functions , 2005, J. Intell. Robotic Syst..

[13]  Giuseppe Oriolo,et al.  Kinematic modeling and redundancy resolution for nonholonomic mobile manipulators , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[14]  H. Sussmann,et al.  A continuation method for nonholonomic path-finding problems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[15]  Raymond A. DeCarlo,et al.  Continuation methods: Theory and applications , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  Y. Chitour A continuation method for motion-planning problems , 2006 .

[17]  A. Chelouah,et al.  On the motion planning of rolling surfaces , 2003 .

[18]  Janusz Jakubiak,et al.  A repeatable inverse kinematics algorithm with linear invariant subspaces for mobile manipulators , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[19]  J. Bismut Large Deviations and the Malliavin Calculus , 1984 .

[20]  Krzysztof Tchon Repeatable, extended Jacobian inverse kinematics algorithm for mobile manipulators , 2006, Syst. Control. Lett..

[21]  Katarzyna Zadarnowska,et al.  A control theory framework for performance evaluation of mobile manipulators , 2007, Robotica.