The Saxl conjecture and the dominance order

In 2012 Jan Saxl conjectured that all irreducible representations of the symmetric group occur in the decomposition of the tensor square of the irreducible representation corresponding to the staircase partition. We make progress on this conjecture by proving the occurrence of all those irreducibles which correspond to partitions that are comparable to the staircase partition in the dominance order. Moreover, we use our result to show the occurrence of all irreducibles corresponding to hook partitions. This generalizes results by Pak et?al. (2013).

[1]  Ernesto Vallejo,et al.  A diagrammatic approach to Kronecker squares , 2013, J. Comb. Theory, Ser. A.

[2]  A. Klyachko QUANTUM MARGINAL PROBLEM AND REPRESENTATIONS OF THE SYMMETRIC GROUP , 2004, quant-ph/0409113.

[3]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[4]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[5]  Aram W. Harrow,et al.  Nonzero Kronecker Coefficients and What They Tell us about Spectra , 2007 .

[6]  J. M. Landsberg,et al.  An Overview of Mathematical Issues Arising in the Geometric Complexity Theory Approach to VP≠VNP , 2009, SIAM J. Comput..

[7]  Greta Panova,et al.  On the complexity of computing Kronecker coefficients , 2014, computational complexity.

[8]  Peter Bürgisser,et al.  Explicit lower bounds via geometric complexity theory , 2012, STOC '13.

[9]  Peter Bürgisser,et al.  Geometric complexity theory and tensor rank , 2010, STOC '11.

[10]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[11]  Michael Walter,et al.  Computing Multiplicities of Lie Group Representations , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[12]  Ketan Mulmuley,et al.  Geometric Complexity Theory I: An Approach to the P vs. NP and Related Problems , 2002, SIAM J. Comput..

[13]  Christian Ikenmeyer 2 Flow description of LR coefficients 2 . 1 Flows on digraphs , 2012 .

[14]  Greta Panova,et al.  Kronecker products, characters, partitions, and the tensor square conjectures , 2013, 1304.0738.

[15]  Matthias Christandl,et al.  On Nonzero Kronecker Coefficients and their Consequences for Spectra , 2005 .

[16]  J. M. Landsberg,et al.  Equations for Lower Bounds on Border Rank , 2013, Exp. Math..

[17]  I. Pak,et al.  Kronecker coefficients: the tensor square conjecture and unimodality , 2014 .

[18]  M. Christandl The Structure of Bipartite Quantum States - Insights from Group Theory and Cryptography , 2006, quant-ph/0604183.

[19]  I. Pak,et al.  Bounds on the Kronecker coefficients , 2014, 1406.2988.

[20]  Ketan Mulmuley,et al.  Geometric Complexity Theory II: Towards Explicit Obstructions for Embeddings among Class Varieties , 2006, SIAM J. Comput..

[21]  Matthias Christandl,et al.  The Spectra of Quantum States and the Kronecker Coefficients of the Symmetric Group , 2006 .