The Pyramid Match Kernel: Efficient Learning with Sets of Features

In numerous domains it is useful to represent a single example by the set of the local features or parts that comprise it. However, this representation poses a challenge to many conventional machine learning techniques, since sets may vary in cardinality and elements lack a meaningful ordering. Kernel methods can learn complex functions, but a kernel over unordered set inputs must somehow solve for correspondences---generally a computationally expensive task that becomes impractical for large set sizes. We present a new fast kernel function called the pyramid match that measures partial match similarity in time linear in the number of features. The pyramid match maps unordered feature sets to multi-resolution histograms and computes a weighted histogram intersection in order to find implicit correspondences based on the finest resolution histogram cell where a matched pair first appears. We show the pyramid match yields a Mercer kernel, and we prove bounds on its error relative to the optimal partial matching cost. We demonstrate our algorithm on both classification and regression tasks, including object recognition, 3-D human pose inference, and time of publication estimation for documents, and we show that the proposed method is accurate and significantly more efficient than current approaches.

[1]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[2]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[3]  P. Anandan Measuring Visual Motion From Image Sequences , 1987 .

[4]  P Perona,et al.  Preattentive texture discrimination with early vision mechanisms. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[5]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[6]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[7]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[9]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[10]  M.M. Van Hulle,et al.  View-based 3D object recognition with support vector machines , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[11]  Vapnik,et al.  SVMs for Histogram Based Image Classification , 1999 .

[12]  Luc Van Gool,et al.  Content-Based Image Retrieval Based on Local Affinely Invariant Regions , 1999, VISUAL.

[13]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[14]  Jason Weston,et al.  Dealing with large diagonals in kernel matrices , 2003 .

[15]  John D. Lafferty,et al.  Information Diffusion Kernels , 2002, NIPS.

[16]  Andrew Zisserman,et al.  Automated Scene Matching in Movies , 2002, CIVR.

[17]  Trevor Darrell,et al.  Fast pose estimation with parameter-sensitive hashing , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[18]  Jitendra Malik,et al.  Learning a discriminative classifier using shape context distances , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[19]  Thomas Gärtner,et al.  A survey of kernels for structured data , 2003, SKDD.

[20]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[21]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[22]  Tony Jebara,et al.  A Kernel Between Sets of Vectors , 2003, ICML.

[23]  Lior Wolf,et al.  Learning over Sets using Kernel Principal Angles , 2003, J. Mach. Learn. Res..

[24]  Nuno Vasconcelos,et al.  A Kullback-Leibler Divergence Based Kernel for SVM Classification in Multimedia Applications , 2003, NIPS.

[25]  Barbara Caputo,et al.  Recognition with local features: the kernel recipe , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[26]  Trevor Darrell,et al.  Inferring 3D structure with a statistical image-based shape model , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[27]  Tamir Hazan,et al.  Algebraic Set Kernels with Application to Inference Over Local Image Representations , 2004, NIPS.

[28]  Jean-Philippe Vert,et al.  Semigroup Kernels on Finite Sets , 2004, NIPS.

[29]  Ankur Agarwal,et al.  3D human pose from silhouettes by relevance vector regression , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[30]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[31]  Jean-Philippe Tarel,et al.  Non-Mercer Kernels for SVM Object Recognition , 2004, BMVC.

[32]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[33]  Shree K. Nayar,et al.  Multiresolution histograms and their use for recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[35]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[36]  Mario Fritz,et al.  On the Significance of Real-World Conditions for Material Classification , 2004, ECCV.

[37]  Nello Cristianini,et al.  Latent Semantic Kernels , 2001, Journal of Intelligent Information Systems.

[38]  J Eichhorn,et al.  Object categorization with SVM: kernels for local features , 2004 .

[39]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[40]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[41]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[42]  Trevor Darrell,et al.  Fast contour matching using approximate earth mover's distance , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[43]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[44]  Lixin Fan,et al.  Categorizing Nine Visual Classes using Local Appearance Descriptors , 2004 .

[45]  Jitendra Malik,et al.  Shape matching and object recognition using low distortion correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[46]  Harpreet S. Sawhney,et al.  Vehicle identification between non-overlapping cameras without direct feature matching , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[47]  N. Boujemaa,et al.  The intermediate matching kernel for image local features , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[48]  Trevor Darrell,et al.  The pyramid match kernel: discriminative classification with sets of image features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[49]  Alexei A. Efros,et al.  Discovering object categories in image collections , 2005 .

[50]  Alexei A. Efros,et al.  Discovering objects and their location in images , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[51]  Siwei Lyu,et al.  Mercer kernels for object recognition with local features , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[52]  Alex Holub,et al.  Exploiting Unlabelled Data for Hybrid Object Classification , 2005 .

[53]  Francesca Odone,et al.  Building kernels from binary strings for image matching , 2005, IEEE Transactions on Image Processing.

[54]  Pietro Perona,et al.  Combining generative models and Fisher kernels for object recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[55]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[56]  Trevor Darrell,et al.  Approximate Correspondences in High Dimensions , 2006, NIPS.

[57]  Lior Wolf,et al.  Perception Strategies in Hierarchical Vision Systems , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[58]  Jitendra Malik,et al.  Image Retrieval and Classification Using Local Distance Functions , 2006, NIPS.

[59]  Gang Wang,et al.  Using Dependent Regions for Object Categorization in a Generative Framework , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[60]  Kristen Grauman Matching sets of features for efficient retrieval and recognition , 2006 .

[61]  Jitendra Malik,et al.  Shape Matching and Object Recognition , 2006, Toward Category-Level Object Recognition.

[62]  Jitendra Malik,et al.  SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[63]  David G. Lowe,et al.  Multiclass Object Recognition with Sparse, Localized Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[64]  Trevor Darrell,et al.  Pyramid Match Kernels: Discriminative Classification with Sets of Image Features (version 2) , 2006 .

[65]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[66]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.