Targeting protein-protein interactions: lessons from p53/MDM2.

The tremendous challenge of inhibiting therapeutically important protein-protein interactions has created the opportunity to extend traditional medicinal chemistry to a new class of targets and to explore nontraditional strategies. Here we review a widely studied system, the interaction between tumor suppressor p53 and its natural antagonist MDM2, for which both traditional and nontraditional approaches have been reported. This system has been a testing ground for novel proteomimetic scaffold-based strategies, i.e., for attempts to mimic the recognition surface displayed by a folded protein with unnatural oligomers. Retroinverso peptides, peptoids, terphenyls, beta-hairpins, p-oligobenzamides, beta-peptides, and miniproteins have all been explored as inhibitors of the p53/MDM2 interaction, and we focus on these oligomer-based efforts. Traditional approaches have been successful as well, and we briefly review small molecule inhibitors along with other strategies for reactivation of the p53 pathway, for comparison with oligomer- based approaches. We close with comments on an emerging dichotomy among protein-protein interaction targets.

[1]  Per Källblad,et al.  Small-molecule inhibitors of the MDM2-p53 protein-protein interaction based on an isoindolinone scaffold. , 2006, Journal of medicinal chemistry.

[2]  Matthias John,et al.  RNAi-mediated gene silencing in non-human primates , 2006, Nature.

[3]  A. Hamilton,et al.  Diphenylindane-based proteomimetics reproduce the projection of the i, i+3, i+4, and i+7 residues on an alpha-helix. , 2006, Organic letters.

[4]  Do-Hyoung Kim,et al.  Proteomimetic libraries: design, synthesis, and evaluation of p53-MDM2 interaction inhibitors. , 2006, Journal of combinatorial chemistry.

[5]  Oliver Zerbe,et al.  Structure–Activity Studies in a Family of β‐Hairpin Protein Epitope Mimetic Inhibitors of the p53–HDM2 Protein–Protein Interaction , 2006 .

[6]  O. Myklebost,et al.  Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Wei Gu,et al.  p53 ubiquitination: Mdm2 and beyond. , 2006, Molecular cell.

[8]  John A. Robinson,et al.  Protein ligand design: from phage display to synthetic protein epitope mimetics in human antibody Fc-binding peptidomimetics. , 2006, Journal of the American Chemical Society.

[9]  P. Hajduk,et al.  Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis. , 2006, Journal of medicinal chemistry.

[10]  Toshiaki Hara,et al.  Probing the structural requirements of peptoids that inhibit HDM2-p53 interactions. , 2006, Journal of the American Chemical Society.

[11]  Joshua A. Kritzer,et al.  Miniature Protein Inhibitors of the p53–hDM2 Interaction , 2006, Chembiochem : a European journal of chemical biology.

[12]  D. Parks,et al.  Benzodiazepinedione inhibitors of the Hdm2:p53 complex suppress human tumor cell proliferation in vitro and sensitize tumors to doxorubicin in vivo , 2006, Molecular Cancer Therapeutics.

[13]  Steven Fletcher,et al.  Protein surface recognition and proteomimetics: mimics of protein surface structure and function. , 2005, Current opinion in chemical biology.

[14]  L. Vassilev,et al.  Nongenotoxic activation of the p53 pathway as a therapeutic strategy for multiple myeloma. , 2005, Blood.

[15]  Andrew D. Hamilton,et al.  Synthesis of a 2,3‘;6‘,3‘ ‘-Terpyridine Scaffold as an α-Helix Mimetic , 2005 .

[16]  T. Holak,et al.  NMR indicates that the small molecule RITA does not block p53-MDM2 binding in vitro , 2005, Nature Medicine.

[17]  V. Grinkevich,et al.  Reply to 'NMR indicates that the small molecule RITA does not block p53-MDM2 binding in vitro' , 2005, Nature Medicine.

[18]  G. Murdaca,et al.  Emerging biologic drugs for the treatment of rheumatoid arthritis. , 2005, Autoimmunity reviews.

[19]  Marina Konopleva,et al.  MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. , 2005, Blood.

[20]  Joshua A. Kritzer,et al.  A Rapid Library Screen for Tailoring β-Peptide Structure and Function , 2005 .

[21]  Lloyd M. Smith,et al.  Efficient synthesis of a beta-peptide combinatorial library with microwave irradiation. , 2005, Journal of the American Chemical Society.

[22]  K. Wiman,et al.  Reactivation of Mutant p53 and Induction of Apoptosis in Human Tumor Cells by Maleimide Analogs* , 2005, Journal of Biological Chemistry.

[23]  Paul N Barlow,et al.  Structure of free MDM2 N-terminal domain reveals conformational adjustments that accompany p53-binding. , 2005, Journal of molecular biology.

[24]  A. Hamilton,et al.  Strategies for targeting protein-protein interactions with synthetic agents. , 2005, Angewandte Chemie.

[25]  Andrew D. Hamilton,et al.  Terphenyl-Based Bak BH3 α-Helical Proteomimetics as Low-Molecular-Weight Antagonists of Bcl-xL , 2005 .

[26]  J. Deschamps,et al.  Structure-based design of potent non-peptide MDM2 inhibitors. , 2005, Journal of the American Chemical Society.

[27]  L. Vassilev p53 Activation by small molecules: application in oncology. , 2005, Journal of medicinal chemistry.

[28]  Chun-ching Lin,et al.  Isoliquiritigenin induces apoptosis and cell cycle arrest through p53-dependent pathway in Hep G2 cells. , 2005, Life sciences.

[29]  S. Korsmeyer,et al.  An inhibitor of Bcl-2 family proteins induces regression of solid tumours , 2005, Nature.

[30]  Jiandong Chen,et al.  p53 α-Helix mimetics antagonize p53/MDM2 interaction and activate p53 , 2005, Molecular Cancer Therapeutics.

[31]  David R Spring,et al.  Chemical genetics to chemical genomics: small molecules offer big insights. , 2005, Chemical Society reviews.

[32]  K. Wiman,et al.  PRIMA-1MET synergizes with cisplatin to induce tumor cell apoptosis , 2005, Oncogene.

[33]  S. Sebti,et al.  Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. , 2005, Angewandte Chemie.

[34]  Michael C. Myers,et al.  A new family of small molecules to probe the reactivation of mutant p53. , 2005, Journal of the American Chemical Society.

[35]  Joshua A. Kritzer,et al.  Solution Structure of a β-Peptide Ligand for hDM2 , 2005 .

[36]  S. Sebti,et al.  Terephthalamide derivatives as mimetics of helical peptides: disruption of the Bcl-x(L)/Bak interaction. , 2005, Journal of the American Chemical Society.

[37]  H. Blackwell,et al.  Expedient synthesis and design strategies for new peptoid construction. , 2005, Organic letters.

[38]  J. Lieberman,et al.  The prospect of silencing disease using RNA interference. , 2005, JAMA.

[39]  Hong Yang,et al.  Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors. , 2005, Cancer research.

[40]  P. Hajduk,et al.  Druggability indices for protein targets derived from NMR-based screening data. , 2005, Journal of medicinal chemistry.

[41]  S. Gellman,et al.  Effects of conformational stability and geometry of guanidinium display on cell entry by beta-peptides. , 2005, Journal of the American Chemical Society.

[42]  Maxwell D Cummings,et al.  Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. , 2005, Journal of medicinal chemistry.

[43]  Maxwell D Cummings,et al.  1,4-Benzodiazepine-2,5-diones as small molecule antagonists of the HDM2-p53 interaction: discovery and SAR. , 2005, Bioorganic & medicinal chemistry letters.

[44]  A. Schepartz,et al.  Paralog-selective ligands for bcl-2 proteins. , 2005, Journal of the American Chemical Society.

[45]  C. Wahlestedt,et al.  Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality , 2005, Nucleic acids research.

[46]  Joshua A. Kritzer,et al.  Relationship between side chain structure and 14-helix stability of beta3-peptides in water. , 2005, Journal of the American Chemical Society.

[47]  Joshua A. Kritzer,et al.  β-Peptides as inhibitors of protein–protein interactions , 2005 .

[48]  D. Kahne,et al.  Use of a retroinverso p53 peptide as an inhibitor of MDM2. , 2004, Journal of the American Chemical Society.

[49]  A. Giannis,et al.  Novel Activators of the Tumour Suppressor p53 , 2004, Chembiochem : a European journal of chemical biology.

[50]  M. Protopopova,et al.  Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors , 2004, Nature Medicine.

[51]  Xueliang Fang,et al.  Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. , 2004, Analytical biochemistry.

[52]  T. Kodadek,et al.  Transformation of low-affinity lead compounds into high-affinity protein capture agents. , 2004, Chemistry & biology.

[53]  M. Congreve,et al.  Fragment-based lead discovery , 2004, Nature Reviews Drug Discovery.

[54]  Donald J Abraham,et al.  A nonpeptidic sulfonamide inhibits the p53-mdm2 interaction and activates p53-dependent transcription in mdm2-overexpressing cells. , 2004, Journal of medicinal chemistry.

[55]  Joshua A. Kritzer,et al.  Helical β-Peptide Inhibitors of the p53-hDM2 Interaction , 2004 .

[56]  Phillip A. Sharp,et al.  The RNAi revolution , 2004, Nature.

[57]  S. Gellman,et al.  Antimicrobial 14-Helical β-Peptides: Potent Bilayer Disrupting Agents† , 2004 .

[58]  T. O'Brien,et al.  Fragment-based drug discovery. , 2004, Journal of medicinal chemistry.

[59]  Christine Klemke,et al.  New secondary metabolites from the marine endophytic fungus Apiospora montagnei. , 2004, Journal of natural products.

[60]  Kenneth J. Hillan,et al.  Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer , 2004, Nature Reviews Drug Discovery.

[61]  Oliver Zerbe,et al.  Using a β‐Hairpin To Mimic an α‐Helix: Cyclic Peptidomimetic Inhibitors of the p53–HDM2 Protein–Protein Interaction , 2004 .

[62]  Michelle R. Arkin,et al.  Small-molecule inhibitors of protein–protein interactions: progressing towards the dream , 2004, Nature Reviews Drug Discovery.

[63]  Tyra G. Wolfsberg,et al.  Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[64]  L. Vassilev,et al.  In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2 , 2004, Science.

[65]  T. Pollard,et al.  High affinity, paralog-specific recognition of the Mena EVH1 domain by a miniature protein. , 2004, Journal of the American Chemical Society.

[66]  D. Hicklin,et al.  Monoclonal antibody therapeutics and apoptosis , 2003, Oncogene.

[67]  R. Bhatnagar,et al.  RNA Interference: Biology, Mechanism, and Applications , 2003, Microbiology and Molecular Biology Reviews.

[68]  M. Zloh,et al.  Solid-phase synthesis of the cyclic peptide portion of chlorofusin, an inhibitor of p53-MDM2 interactions. , 2003, Organic letters.

[69]  D. Boger,et al.  Synthesis of the chlorofusin cyclic peptide: assignment of the asparagine stereochemistry. , 2003, Organic letters.

[70]  A. Schepartz,et al.  Molecular recognition of protein surfaces: high affinity ligands for the CBP KIX domain. , 2003, Journal of the American Chemical Society.

[71]  Annelise E Barron,et al.  Helical peptoid mimics of lung surfactant protein C. , 2003, Chemistry & biology.

[72]  Thomas Kodadek,et al.  Isolation of protein ligands from large peptoid libraries. , 2003, Journal of the American Chemical Society.

[73]  J. Cleveland,et al.  Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. , 2003, Cancer cell.

[74]  A. Barron,et al.  Helical peptoid mimics of magainin-2 amide. , 2003, Journal of the American Chemical Society.

[75]  Sudhir Agrawal,et al.  Antisense therapy targeting MDM2 oncogene in prostate cancer: Effects on proliferation, apoptosis, multiple gene expression, and chemotherapy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[76]  B. Shoichet,et al.  A specific mechanism of nonspecific inhibition. , 2003, Journal of medicinal chemistry.

[77]  T. Kodadek,et al.  Mixed-element capture agents: a simple strategy for the construction of synthetic, high-affinity protein capture ligands. , 2003, Journal of the American Chemical Society.

[78]  C. Chung,et al.  Effect of detergent on "promiscuous" inhibitors. , 2003, Journal of medicinal chemistry.

[79]  David J Newman,et al.  Natural products as sources of new drugs over the period 1981-2002. , 2003, Journal of natural products.

[80]  T. Berg Modulation of protein-protein interactions with small organic molecules. , 2003, Angewandte Chemie.

[81]  A. Klippel,et al.  Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. , 2003, Nucleic acids research.

[82]  N. Davidson,et al.  Design, synthesis, and evaluation of novel boronic-chalcone derivatives as antitumor agents. , 2003, Journal of medicinal chemistry.

[83]  S. Gellman,et al.  Environment-independent 14-helix formation in short beta-peptides: striking a balance between shape control and functional diversity. , 2003, Journal of the American Chemical Society.

[84]  Ben Shen,et al.  Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. , 2003, Current opinion in chemical biology.

[85]  Alanna Schepartz,et al.  Helix macrodipole control of β3-peptide 14-helix stability in water , 2003 .

[86]  Michelle R Arkin,et al.  Discovery of a potent small molecule IL-2 inhibitor through fragment assembly. , 2003, Journal of the American Chemical Society.

[87]  Michelle R. Arkin,et al.  Binding of small molecules to an adaptive protein–protein interface , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[88]  P. Chène Inhibiting the p53–MDM2 interaction: an important target for cancer therapy , 2003, Nature Reviews Cancer.

[89]  M. McCoy,et al.  Flexible lid to the p53-binding domain of human Mdm2: Implications for p53 regulation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[90]  Matthew A Cooper,et al.  Binding of an inhibitor of the p53/MDM2 interaction to MDM2. , 2003, Chemical communications.

[91]  M. Amarzguioui,et al.  Tolerance for mutations and chemical modifications in a siRNA. , 2003, Nucleic acids research.

[92]  L. Houdebine Antibody manufacture in transgenic animals and comparisons with other systems , 2002, Current Opinion in Biotechnology.

[93]  L. Green,et al.  Antibody discovery: the use of transgenic mice to generate human monoclonal antibodies for therapeutics. , 2002, Current opinion in biotechnology.

[94]  E. Hood,et al.  Monoclonal antibody manufacturing in transgenic plants--myths and realities. , 2002, Current opinion in biotechnology.

[95]  T. von Rüden,et al.  Antibody discovery: phage display. , 2002, Current opinion in biotechnology.

[96]  S. Gellman,et al.  Evidence that the β‐Peptide 14‐Helix is Stabilized by β3‐Residues with Side‐Chain Branching Adjacent to the β‐Carbon Atom , 2002 .

[97]  P. Hajduk,et al.  Integration of NMR and high-throughput screening. , 2002, Combinatorial chemistry & high throughput screening.

[98]  John A. Robinson,et al.  Macrocyclic Hairpin Mimetics of the Cationic Antimicrobial Peptide Protegrin I: A New Family of Broad‐Spectrum Antibiotics , 2002, Chembiochem : a European journal of chemical biology.

[99]  T. Kodadek,et al.  Microwave-assisted solid-phase synthesis of peptoids. , 2002, Organic letters.

[100]  S. Gellman,et al.  Structure-activity studies of 14-helical antimicrobial beta-peptides: probing the relationship between conformational stability and antimicrobial potency. , 2002, Journal of the American Chemical Society.

[101]  Andrew D. Hamilton,et al.  Development of a Potent Bcl-xL Antagonist Based on α-Helix Mimicry , 2002 .

[102]  Min Wu,et al.  The initial evaluation of non-peptidic small-molecule HDM2 inhibitors based on p53-HDM2 complex structure. , 2002, Cancer letters.

[103]  D. Seebach,et al.  The outstanding metabolic stability of a 14C‐labeled β‐nonapeptide in rats – in vitro and in vivo pharmacokinetic studies , 2002, Biopharmaceutics & drug disposition.

[104]  Xin Lu,et al.  Live or let die: the cell's response to p53 , 2002, Nature Reviews Cancer.

[105]  V. Felipo,et al.  A novel N-methyl-D-aspartate receptor open channel blocker with in vivo neuroprotectant activity. , 2002, The Journal of pharmacology and experimental therapeutics.

[106]  S. Gellman,et al.  Tolerance of acyclic residues in the beta-peptide 12-helix: access to diverse side-chain arrays for biological applications. , 2002, Journal of the American Chemical Society.

[107]  John A. Robinson,et al.  A New Family of β‐Hairpin Mimetics Based on a Trypsin Inhibitor from Sunflower Seeds , 2002, Chembiochem : a European journal of chemical biology.

[108]  Galina Selivanova,et al.  Characterization of the p53-rescue drug CP-31398 in vitro and in living cells , 2002, Oncogene.

[109]  Edgar Jacoby,et al.  Biphenyls as potential mimetics of protein α-helix , 2002 .

[110]  Galina Selivanova,et al.  Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound , 2002, Nature Medicine.

[111]  Dudley H. Williams,et al.  On the biosynthesis of an inhibitor of the p53/MDM2 interaction , 2002 .

[112]  Shibo Jiang,et al.  Design of a protein surface antagonist based on alpha-helix mimicry: inhibition of gp41 assembly and viral fusion. , 2002, Angewandte Chemie.

[113]  A. Fersht,et al.  A peptide that binds and stabilizes p53 core domain: Chaperone strategy for rescue of oncogenic mutants , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[114]  Matthew J. Mio,et al.  A field guide to foldamers. , 2001, Chemical reviews.

[115]  K. Vousden,et al.  Activation and activities of the p53 tumour suppressor protein , 2001, British Journal of Cancer.

[116]  Victor S. Lobanov,et al.  High-Density Miniaturized Thermal Shift Assays as a General Strategy for Drug Discovery , 2001 .

[117]  D. Hoyer,et al.  Linear, Peptidase-Resistantβ2/β3-Di- andα/β3-Tetrapeptide Derivatives with Nanomolar Affinities to a Human Somatostatin Receptor, Preliminary Communication , 2001 .

[118]  S. Gellman,et al.  Toward beta-peptide tertiary structure: self-association of an amphiphilic 14-helix in aqueous solution. , 2001, Organic letters.

[119]  P. Trouillas,et al.  Chalcones: structural requirements for antioxidant, estrogenic and antiproliferative activities. , 2001, Anticancer research.

[120]  D. Seebach,et al.  Synthesis of cyclo-β-tripeptides and their biological in vitro evaluation as antiproliferatives against the growth of human cancer cell lines , 2001 .

[121]  J. Chin,et al.  Design and Evolution of a Miniature Bcl-2 Binding Protein. , 2001, Angewandte Chemie.

[122]  W. DeGrado,et al.  beta-Peptides: from structure to function. , 2001, Chemical reviews.

[123]  A. Fersht,et al.  Rescuing the function of mutant p53 , 2001, Nature Reviews Cancer.

[124]  Jiawei Han,et al.  Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[125]  W. DeGrado,et al.  De Novo Design, Synthesis, and Characterization of Antimicrobial β-Peptides , 2001 .

[126]  S. Gellman,et al.  Diversity in short beta-peptide 12-helices: high-resolution structural analysis in aqueous solution of a hexamer containing sulfonylated pyrrolidine residues. , 2001, Journal of the American Chemical Society.

[127]  D. Seebach,et al.  The Outstanding Biological Stability of β‐ and γ‐Peptides toward Proteolytic Enzymes: An In Vitro Investigation with Fifteen Peptidases , 2001 .

[128]  W. DeGrado,et al.  De novo design of a monomeric helical beta-peptide stabilized by electrostatic interactions. , 2001, Journal of the American Chemical Society.

[129]  A. Hamilton,et al.  Toward proteomimetics: terphenyl derivatives as structural and functional mimics of extended regions of an alpha-helix. , 2001, Journal of the American Chemical Society.

[130]  P. Chène,et al.  The role of tetramerization in p53 function , 2001, Oncogene.

[131]  S. Gellman,et al.  An efficient route to either enantiomer of orthogonally protected trans-3-aminopyrrolidine-4-carboxylic acid. , 2001, The Journal of organic chemistry.

[132]  D. Seebach,et al.  The Miraculous CD Spectra (and Secondary Structures?) ofβ-Peptides as They Grow Longer, Preliminary Communication , 2001 .

[133]  C. Renner,et al.  Chalcone derivatives antagonize interactions between the human oncoprotein MDM2 and p53. , 2001, Biochemistry.

[134]  D. Williams,et al.  Isolation and structure elucidation of Chlorofusin, a novel p53-MDM2 antagonist from a Fusarium sp. , 2001, Journal of the American Chemical Society.

[135]  John A. Robinson,et al.  Combinatorial Biomimetic Chemistry: Parallel Synthesis of a Small Library ofβ-Hairpin Mimetics Based on Loop III from Human Platelet-Derived Growth Factor B , 2000 .

[136]  G. Tortora,et al.  A novel MDM2 anti‐sense oligonucleotide has anti‐tumor activity and potentiates cytotoxic drugs acting by different mechanisms in human colon cancer , 2000, International journal of cancer.

[137]  C. Khosla,et al.  Natural product biosynthesis: a new interface between enzymology and medicine. , 2000, The Journal of organic chemistry.

[138]  R. Stroud,et al.  Site-directed ligand discovery. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[139]  P. Furet,et al.  Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. , 2000, Journal of medicinal chemistry.

[140]  W. Lim,et al.  Improving SH3 domain ligand selectivity using a non-natural scaffold. , 2000, Chemistry & biology.

[141]  A. Hamilton,et al.  Peptide and protein recognition by designed molecules. , 2000, Chemical reviews.

[142]  D. Fabbro,et al.  A small synthetic peptide, which inhibits the p53-hdm2 interaction, stimulates the p53 pathway in tumour cell lines. , 2000, Journal of molecular biology.

[143]  Robert M. Williams,et al.  The Asymmetric Total Synthesis of (+)- and (−)-Spirotryprostatin B , 2000 .

[144]  S. Gellman,et al.  12-Helix Formation in Aqueous Solution with Short β-Peptides Containing Pyrrolidine-Based Residues , 2000 .

[145]  S. Gellman,et al.  Antibiotics: Non-haemolytic β-amino-acid oligomers , 2000, Nature.

[146]  A G Cochran,et al.  Antagonists of protein-protein interactions. , 2000, Chemistry & biology.

[147]  B. Foster,et al.  Pharmacological rescue of mutant p53 conformation and function. , 1999, Science.

[148]  M. Oren Regulation of the p53 Tumor Suppressor Protein* , 1999, The Journal of Biological Chemistry.

[149]  G. Wahl,et al.  p53 regulation by post-translational modification and nuclear retention in response to diverse stresses , 1999, Oncogene.

[150]  W. DeGrado,et al.  De Novo Design of Antibacterial β-Peptides , 1999 .

[151]  M. Pincus,et al.  Conformational and Molecular Basis for Induction of Apoptosis by a p53 C-terminal Peptide in Human Cancer Cells* , 1999, The Journal of Biological Chemistry.

[152]  H. Hauser,et al.  β‐Peptides as Inhibitors of Small‐Intestinal Cholesterol and Fat Absorption , 1999 .

[153]  L. Le,et al.  MDM2 oncogene as a target for cancer therapy: An antisense approach. , 1999, International journal of oncology.

[154]  S. Gellman,et al.  Synthesis and Structural Characterization of Helix-Forming β-Peptides: trans-2-Aminocyclopentanecarboxylic Acid Oligomers , 1999 .

[155]  K A Dill,et al.  Designing polymers that mimic biomolecules. , 1999, Current opinion in structural biology.

[156]  I. Karle,et al.  Synthesis and Characterization of trans-2-Aminocyclohexanecarboxylic Acid Oligomers: An Unnatural Helical Secondary Structure and Implications for β-Peptide Tertiary Structure , 1999 .

[157]  K. Wiman,et al.  Reactivation of Mutant p53 through Interaction of a C-Terminal Peptide with the Core Domain , 1999, Molecular and Cellular Biology.

[158]  A. Levine,et al.  Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[159]  John A. Robinson,et al.  Structural Mimicry of Canonical Conformations in Antibody Hypervariable Loops Using Cyclic Peptides Containing a Heterochiral Diproline Template , 1999 .

[160]  S. Durell,et al.  Formation of Short, Stable Helices in Aqueous Solution by β-Amino Acid Hexamers , 1999 .

[161]  S. Batra,et al.  Pharmacokinetics and biodistribution of genetically engineered antibodies. , 2002, Current opinion in biotechnology.

[162]  I. Morize,et al.  Improved Procedure for the Solution Phase Preparation of 1,4-Benzodiazepine-2,5-dione Libraries via Armstrong's Convertible Isonitrile and the Ugi Reaction , 1998 .

[163]  John A. Robinson,et al.  Stabilization of aβ-Hairpin Conformation in a Cyclic Peptide Using the Templating Effect of a Heterochiral Diproline Unit , 1998 .

[164]  J. Niland,et al.  The MDM2 gene amplification database. , 1998, Nucleic acids research.

[165]  S. Schreiber Chemical genetics resulting from a passion for synthetic organic chemistry. , 1998, Bioorganic & medicinal chemistry.

[166]  E. Park,et al.  Licochalcone A: An Inducer of Cell Differentiation and Cytotoxic Agent from Pogostemon cabling 1 , 1998, Planta medica.

[167]  Samuel H. Gellman,et al.  Foldamers: A Manifesto , 1998 .

[168]  A. Levine,et al.  Nucleo‐cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein , 1998, The EMBO journal.

[169]  Hirofumi Tanaka,et al.  Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53 , 1997, FEBS letters.

[170]  Roland L. Dunbrack,et al.  Chiral N-substituted glycines can form stable helical conformations. , 1997, Folding & design.

[171]  Charles Eigenbrot,et al.  Crystal Structure at 1.7 Å Resolution of VEGF in Complex with Domain 2 of the Flt-1 Receptor , 1997, Cell.

[172]  David P. Lane,et al.  Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo , 1997, Current Biology.

[173]  P. Hajduk,et al.  Discovering High-Affinity Ligands for Proteins , 1997, Science.

[174]  R. Babine,et al.  MOLECULAR RECOGNITION OF PROTEIN-LIGAND COMPLEXES : APPLICATIONS TO DRUG DESIGN , 1997 .

[175]  P. Schuck,et al.  Reliable determination of binding affinity and kinetics using surface plasmon resonance biosensors. , 1997, Current opinion in biotechnology.

[176]  S F Howard,et al.  Molecular characterization of the hdm2-p53 interaction. , 1997, Journal of molecular biology.

[177]  B. Groner,et al.  Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain , 1997, Nature Medicine.

[178]  M. Oren,et al.  Mdm2 promotes the rapid degradation of p53 , 1997, Nature.

[179]  Stephen N. Jones,et al.  Regulation of p53 stability by Mdm2 , 1997, Nature.

[180]  J. Blaydes,et al.  Tolerance of high levels of wild-type p53 in transformed epithelial cells dependent on auto-regulation by mdm-2 , 1997, Oncogene.

[181]  Samuel H. Gellman,et al.  β-Peptide Foldamers: Robust Helix Formation in a New Family of β-Amino Acid Oligomers , 1996 .

[182]  P. Hajduk,et al.  Discovering High-Affinity Ligands for Proteins: SAR by NMR , 1996, Science.

[183]  D. Lane,et al.  Identification of novel mdm2 binding peptides by phage display. , 1996, Oncogene.

[184]  A. Levine,et al.  Structure of the MDM2 Oncoprotein Bound to the p53 Tumor Suppressor Transactivation Domain , 1996, Science.

[185]  A. Hara,et al.  Chemoprevention of 4-nitroquinoline 1-oxide-induced rat oral carcinogenesis by the dietary flavonoids chalcone, 2-hydroxychalcone, and quercetin. , 1996, Cancer research.

[186]  Ulrich Hommel,et al.  β‐Peptides: Synthesis by Arndt‐Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X‐ray crystallography. Helical secondary structure of a β‐hexapeptide in solution and its stability towards pepsin , 1996 .

[187]  R. W. Armstrong,et al.  Postcondensation Modifications of Ugi Four-Component Condensation Products: 1-Isocyanocyclohexene as a Convertible Isocyanide. Mechanism of Conversion, Synthesis of Diverse Structures, and Demonstration of Resin Capture , 1996 .

[188]  Robert W. Armstrong,et al.  Molecular Diversity via a Convertible Isocyanide in the Ugi Four-Component Condensation , 1995 .

[189]  T. Clackson,et al.  A hot spot of binding energy in a hormone-receptor interface , 1995, Science.

[190]  C. Harris,et al.  Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. , 1994, Cancer research.

[191]  D. Lane,et al.  Immunochemical analysis of the interaction of p53 with MDM2;--fine mapping of the MDM2 binding site on p53 using synthetic peptides. , 1994, Oncogene.

[192]  D C Spellmeyer,et al.  Discovery of nanomolar ligands for 7-transmembrane G-protein-coupled receptors from a diverse N-(substituted)glycine peptoid library. , 1994, Journal of medicinal chemistry.

[193]  A. Galbraith,et al.  Inhibition of carcinogen-induced pulmonary and mammary carcinogenesis by chalcone administered subsequent to carcinogen exposure. , 1994, Cancer letters.

[194]  E. Culotta,et al.  p53 sweeps through cancer research. , 1993, Science.

[195]  David Beach,et al.  p21 is a universal inhibitor of cyclin kinases , 1993, Nature.

[196]  J. Trent,et al.  WAF1, a potential mediator of p53 tumor suppression , 1993, Cell.

[197]  Y. Satomi Inhibitory effects of 3′‐methyl‐3‐hydroxy‐chalcone on proliferation of human malignant tumor cells and on skin carcinogenesis , 1993, International journal of cancer.

[198]  D. Housman,et al.  p53-dependent apoptosis modulates the cytotoxicity of anticancer agents , 1993, Cell.

[199]  A. Levine,et al.  Mapping of the p53 and mdm-2 interaction domains. , 1993, Molecular and cellular biology.

[200]  A. Levine,et al.  The p53-mdm-2 autoregulatory feedback loop. , 1993, Genes & development.

[201]  Stephen B. H. Kent,et al.  Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis , 1992 .

[202]  L Wang,et al.  Peptoids: a modular approach to drug discovery. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[203]  P. Meltzer,et al.  Amplification of a gene encoding a p53-associated protein in human sarcomas , 1992, Nature.

[204]  A. Levine,et al.  The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation , 1992, Cell.

[205]  C. E. Peishoff,et al.  Conformational analysis of cyclic hexapeptides containing the D-Pro-L-Pro sequence to fix .beta.-turn positions , 1992 .

[206]  B. Vogelstein,et al.  p53 mutations in human cancers. , 1991, Science.

[207]  C. Toniolo,et al.  Structures of polypeptides from α-amino acids disubstituted at the α-carbon , 1991 .

[208]  D. George,et al.  Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. , 1991, The EMBO journal.

[209]  C. Toniolo,et al.  Structural versatility of peptides from Cα,αdialkylated glycines: Linear Ac3c homo‐oligopeptides , 1989 .

[210]  U. Francke,et al.  Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line , 1987, Somatic cell and molecular genetics.

[211]  A. Isogai,et al.  Isolation and Identification of ( + )-Hexylitaconic Acid as a Plant Growth Regulator , 1984 .

[212]  Claudio Toniolo,et al.  Preferred conformations of peptides containing α,α‐disubstituted α‐amino acids , 1983 .

[213]  I. Ugi From Isocyanides via Four-Component Condensations to Antibiotic Syntheses†‡ , 1982 .

[214]  T. Blundell,et al.  X-ray analysis (1. 4-A resolution) of avian pancreatic polypeptide: Small globular protein hormone. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[215]  E. Appella,et al.  Detection of a transformation-related antigen in chemically induced sarcomas and other transformed cells of the mouse. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[216]  H. Yokosawa,et al.  Hexylitaconic acid: a new inhibitor of p53-HDM2 interaction isolated from a marine-derived fungus, Arthrinium sp. , 2006, Bioorganic & medicinal chemistry letters.

[217]  Ernest Giralt,et al.  A tetraguanidinium ligand binds to the surface of the tetramerization domain of protein P53. , 2004, Angewandte Chemie.

[218]  J. Nicholas,et al.  Small molecule antagonists of proteins. , 2003, Biochemical pharmacology.

[219]  D. Seebach,et al.  Design, machine synthesis, and NMR-solution structure of a β-heptapeptide forming a salt-bridge stabilised 314-helix in methanol and in water , 2001 .

[220]  C. Pickart,et al.  Mechanisms underlying ubiquitination. , 2001, Annual review of biochemistry.

[221]  D. Seebach,et al.  β-Peptides: a surprise at every turn , 1997 .

[222]  R. Zuckermann,et al.  Synthesis of N-substituted glycine peptoid libraries. , 1996, Methods in enzymology.

[223]  G R Marshall,et al.  Factors governing helical preference of peptides containing multiple alpha,alpha-dialkyl amino acids. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[224]  M. Vijayan,et al.  X-Ray crystal structure of pivaloyl-D-Pro-L-Pro-L-Ala-N-methylamide; observation of a consecutive β-turn conformation , 1979 .