Ultra-Tuning of the Rare-Earth fcu-MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins.

Using isoreticular chemistry allows the design and construction of a new rare-earth metal (RE) fcu-MOF with a suitable aperture size for practical steric adsorptive separations. The judicious choice of a relatively short organic building block, namely fumarate, to bridge the 12-connected RE hexanuclear clusters has afforded the contraction of the well-defined RE-fcu-MOF triangular window aperture, the sole access to the two interconnected octahedral and tetrahedral cages. The newly constructed RE (Y(3+) and Tb(3+)) fcu-MOF analogues display unprecedented total exclusion of branched paraffins from normal paraffins. The resultant window aperture size of about 4.7 Å, regarded as a sorbate-size cut-off, enabled a complete sieving of branched paraffins from normal paraffins. The results are supported by collective single gas and mixed gas/vapor adsorption and calorimetric studies.

[1]  Amy J. Cairns,et al.  Tunable Rare Earth fcu-MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction. , 2015, Journal of the American Chemical Society.

[2]  R. Krishna,et al.  Entropic separations of mixtures of aromatics by selective face-to-face molecular stacking in one-dimensional channels of metal-organic frameworks and zeolites. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[3]  C. Serre,et al.  A Complete Separation of Hexane Isomers by a Functionalized Flexible Metal Organic Framework , 2014 .

[4]  C. Serre,et al.  Single and multicomponent adsorption of hexane isomers in the microporous ZIF-8 , 2014 .

[5]  Mohamed Eddaoudi,et al.  A supermolecular building approach for the design and construction of metal-organic frameworks. , 2014, Chemical Society reviews.

[6]  Amy J. Cairns,et al.  Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture , 2014, Nature Communications.

[7]  J. Long,et al.  Hydrocarbon Separations in Metal–Organic Frameworks , 2014 .

[8]  Ryan P. Lively,et al.  Exploring the Framework Hydrophobicity and Flexibility of ZIF-8: From Biofuel Recovery to Hydrocarbon Separations , 2013 .

[9]  Masakazu Higuchi,et al.  Methane Separation: High CO2/CH4 and C2 Hydrocarbons/CH4 Selectivity in a Chemically Robust Porous Coordination Polymer (Adv. Funct. Mater. 28/2013) , 2013 .

[10]  D. Caputo,et al.  Adsorption of Light Hydrocarbons on LTA and FER Zeolites , 2013 .

[11]  Rajamani Krishna,et al.  Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels , 2013, Science.

[12]  Amy J. Cairns,et al.  Tunable rare-earth fcu-MOFs: a platform for systematic enhancement of CO2 adsorption energetics and uptake. , 2013, Journal of the American Chemical Society.

[13]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.

[14]  Rajamani Krishna,et al.  Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites , 2012, Science.

[15]  A. Simon‐Masseron,et al.  Separation of C6 Paraffins Using Zeolitic Imidazolate Frameworks: Comparison with Zeolite 5A , 2012 .

[16]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[17]  Peyman Z. Moghadam,et al.  p-Xylene-selective metal-organic frameworks: a case of topology-directed selectivity. , 2011, Journal of the American Chemical Society.

[18]  S. Nguyen,et al.  Kinetic separation of propene and propane in metal-organic frameworks: controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios. , 2011, Journal of the American Chemical Society.

[19]  D. D. De Vos,et al.  Separation of C(5)-hydrocarbons on microporous materials: complementary performance of MOFs and zeolites. , 2010, Journal of the American Chemical Society.

[20]  Omar M Yaghi,et al.  The pervasive chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[21]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[22]  Rui Zhou,et al.  Twelve-connected net with face-centered cubic topology: a coordination polymer based on [Cu12(mu4-SCH3)6]6+ clusters and CN- linkers. , 2005, Angewandte Chemie.

[23]  Xian‐Ming Zhang,et al.  A twelve-connected Cu6S4 cluster-based coordination polymer. , 2005, Journal of the American Chemical Society.

[24]  Michael O'Keeffe,et al.  Three-periodic nets and tilings: semiregular nets. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[25]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[26]  Anthony L. Spek,et al.  Journal of , 1993 .

[27]  Michael O'Keeffe,et al.  Three-periodic nets and tilings: regular and quasiregular nets. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[28]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[29]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[30]  C. Dalmazzone Génération mécanique des émulsions , 2000 .

[31]  P. Magnoux,et al.  Mise en évidence de l'adsorption de l 'isopentane dans les pores de la zéolithe 5A , 2000 .

[32]  A. Rodrigues,et al.  Fixed-Bed Adsorption of n-Pentane/Isopentane Mixtures in Pellets of 5A Zeolite , 1997 .

[33]  R. Eldridge,et al.  Olefin/paraffin separation technology: a review , 1993 .