Sparse Grouped Gaussian Processes for Solar Power Forecasting

We consider multi-task regression models where observations are assumed to be a linear combination of several latent node and weight functions, all drawn from Gaussian process priors that allow nonzero covariance between grouped latent functions. Motivated by the problem of developing scalable methods for distributed solar forecasting, we exploit sparse covariance structures where latent functions are assumed to be conditionally independent given a group-pivot latent function. We exploit properties of multivariate Gaussians to construct sparse Cholesky factors directly, rather than obtaining them through iterative routines, and by doing so achieve significantly improved time and memory complexity including prediction complexity that is linear in the number of grouped functions. We test our approach on large multi-task datasets and find that sparse specifications achieve the same or better accuracy than non-sparse counterparts in less time, and improve on benchmark model accuracy.

[1]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[2]  Yee Whye Teh,et al.  Semiparametric latent factor models , 2005, AISTATS.

[3]  Neil D. Lawrence,et al.  Computationally Efficient Convolved Multiple Output Gaussian Processes , 2011, J. Mach. Learn. Res..

[4]  Edwin V. Bonilla,et al.  Kernel Multi-task Learning using Task-specific Features , 2007, AISTATS.

[5]  Andrew Gordon Wilson,et al.  Gaussian Process Regression Networks , 2011, ICML.

[6]  Andrew Gordon Wilson,et al.  GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration , 2018, NeurIPS.

[7]  Neil D. Lawrence,et al.  Sparse Convolved Gaussian Processes for Multi-output Regression , 2008, NIPS.

[8]  Kurt Cutajar Practical learning of deep gaussian processes via random Fourier features , 2016 .

[9]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[10]  Arno Solin,et al.  Hilbert space methods for reduced-rank Gaussian process regression , 2014, Stat. Comput..

[11]  Edwin V. Bonilla,et al.  Multi-task Gaussian Process Prediction , 2007, NIPS.

[12]  Carl E. Rasmussen,et al.  Analysis of Some Methods for Reduced Rank Gaussian Process Regression , 2003, European Summer School on Multi-AgentControl.

[13]  Andrew Gordon Wilson,et al.  Product Kernel Interpolation for Scalable Gaussian Processes , 2018, AISTATS.

[14]  Carlos F.M. Coimbra,et al.  History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining , 2018, Solar Energy.

[15]  Neil D. Lawrence,et al.  Kernels for Vector-Valued Functions: a Review , 2011, Found. Trends Mach. Learn..

[16]  Dongchu Sun,et al.  Estimation of the multivariate normal precision and covariance matrices in a star-shape model , 2005 .

[17]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[18]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[19]  Zoubin Ghahramani,et al.  Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.

[20]  Marc G. Genton,et al.  Classes of Kernels for Machine Learning: A Statistics Perspective , 2002, J. Mach. Learn. Res..

[21]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[22]  Maurizio Filippone,et al.  Random Feature Expansions for Deep Gaussian Processes , 2016, ICML.

[23]  Soteris A. Kalogirou,et al.  Machine learning methods for solar radiation forecasting: A review , 2017 .

[24]  Li Zhang,et al.  Wavelet support vector machine , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[25]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[26]  Estimation of the Cholesky decomposition of the covariance matrix for a conditional independent normal model , 2005 .

[27]  James Hensman,et al.  Scalable Variational Gaussian Process Classification , 2014, AISTATS.

[28]  Flore Remouit,et al.  Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources , 2015 .

[29]  Edwin V. Bonilla,et al.  Scalable Inference for Gaussian Process Models with Black-Box Likelihoods , 2015, NIPS.

[30]  Michael A. Osborne,et al.  Preconditioning Kernel Matrices , 2016, ICML.

[31]  Prasanth B. Nair,et al.  Scalable Gaussian Processes with Grid-Structured Eigenfunctions (GP-GRIEF) , 2018, ICML.

[32]  J. Weston,et al.  Approximation Methods for Gaussian Process Regression , 2007 .

[33]  R. Urraca,et al.  Review of photovoltaic power forecasting , 2016 .

[34]  Andrew Gordon Wilson,et al.  Kernel Interpolation for Scalable Structured Gaussian Processes (KISS-GP) , 2015, ICML.

[35]  Neil D. Lawrence,et al.  Fast Nonparametric Clustering of Structured Time-Series , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Astrid Dahl,et al.  Grouped Gaussian processes for solar power prediction , 2019, Machine Learning.