Hollandites as a new class of multiferroics

[1]  Giuseppe Modoni,et al.  Mechanisms and effects , 2014 .

[2]  Simon J. L. Billinge,et al.  On the estimation of statistical uncertainties on powder diffraction and small-angle scattering data from two-dimensional X-ray detectors , 2013, 1309.3614.

[3]  Liyan Wu,et al.  Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials , 2013, Nature.

[4]  J. Scott Room-temperature multiferroic magnetoelectrics , 2013 .

[5]  P. Juhás,et al.  Estimating statistical uncertainties on powder diffraction and small angle scattering data from 2-D planar x-ray detectors , 2013 .

[6]  S. O’Brien,et al.  Magnetoelectricity in CoFe2O4 nanocrystal-P(VDF-HFP) thin films , 2013, Nanoscale Research Letters.

[7]  R. Whatmore,et al.  Magnetic Field-Induced Ferroelectric Switching in Multiferroic Aurivillius Phase Thin Films at Room Temperature , 2013 .

[8]  M. Angst Cover Picture: Ferroelectricity from iron valence ordering in rare earth ferrites? (Phys. Status Solidi RRL 6/2013) , 2013 .

[9]  M. Angst Ferroelectricity from iron valence ordering in rare earth ferrites? , 2013, 1304.7255.

[10]  D. M. Evans,et al.  Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT , 2013, Nature Communications.

[11]  G. Sreenivasulu,et al.  Room-temperature single phase multiferroic magnetoelectrics: Pb(Fe, M)x(Zr,Ti)(1−x)O3 [M = Ta, Nb] , 2013 .

[12]  T. Mizokawa,et al.  Spin-Charge-Orbital Ordering in Hollandite-Type Manganites Studied by Model Hartree-Fock Calculation , 2013, 1302.4197.

[13]  I. Dzyaloshinskiǐ THEORY OF HELICOIDAL STRUCTURES IN ANTIFERROMAGNETS. I. NONMETALS , 2013 .

[14]  A. Andreanov,et al.  Competing Antiferromagnetic and Spin-Glass Phases in a Hollandite Structure , 2012, 1212.5954.

[15]  Simon J. L. Billinge,et al.  PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions , 2012, 1211.7126.

[16]  R. Ramesh,et al.  Emergent phenomena at multiferroic heterointerfaces , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  R. Whatmore,et al.  Room temperature ferroelectric and magnetic investigations and detailed phase analysis of Aurivillius phase Bi5Ti3Fe0.7Co0.3O15 thin films , 2012 .

[18]  B. Roessli,et al.  Erratum: Electric field control of chiral magnetic domains in the high-temperature multiferroic CuO [Phys. Rev. B85, 134428 (2012)] , 2012 .

[19]  B. Roessli,et al.  Electric field control of chiral magnetic domains in the high-temperature multiferroic CuO , 2012, 1201.3309.

[20]  A. Akbashev,et al.  Structural and chemical aspects of the design of multiferroic materials , 2011 .

[21]  C. Nan,et al.  Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films , 2011, Advanced materials.

[22]  M. Gabay,et al.  Metal-insulator transition in ultrathin LaNiO3 films. , 2011, Physical review letters.

[23]  Jürgen Schubert,et al.  A strong ferroelectric ferromagnet created by means of spin-lattice coupling. , 2011, Nature.

[24]  Y. Kitagawa,et al.  Low-field magnetoelectric effect at room temperature. , 2010, Nature materials.

[25]  M D Rossell,et al.  Reversible electric control of exchange bias in a multiferroic field-effect device. , 2010, Nature materials.

[26]  R. Ramesh,et al.  Magnetoelectric Coupling Effects in Multiferroic Complex Oxide Composite Structures , 2010, Advanced materials.

[27]  D. Sinclair,et al.  Polytypism in the BaMn0.85Ti0.15O3−δ System (0.07≤δ≤0.34). Structural, Magnetic, and Electrical Characterization of the 9R-Polymorph , 2010 .

[28]  James F. Scott,et al.  Physics and Applications of Bismuth Ferrite , 2009 .

[29]  D. Khomskii,et al.  Classifying multiferroics: Mechanisms and effects , 2009 .

[30]  J. Rondinelli,et al.  Non-$d^0$ Mn-driven ferroelectricity in antiferromagnetic BaMnO$_3$ , 2009, 0901.3333.

[31]  A. Millis,et al.  Two-Dimensional Electron Gases at Oxide Interfaces , 2008 .

[32]  M. Bibes,et al.  Multiferroics: towards a magnetoelectric memory. , 2008, Nature materials.

[33]  T. Kimura,et al.  Cupric oxide as an induced-multiferroic with high-TC. , 2008, Nature materials.

[34]  J. van den Brink,et al.  Multiferroicity due to charge ordering , 2008, 0803.2964.

[35]  Gennady Shvets,et al.  Metamaterials add an extra dimension. , 2008, Nature materials.

[36]  S. Cheong Transition metal oxides: the exciting world of orbitals. , 2007, Nature materials.

[37]  J. Hanson,et al.  Nanoscale disorder in CaCu3Ti4O12: a new route to the enhanced dielectric response. , 2007, Physical review letters.

[38]  Markus Niederberger,et al.  Nonaqueous sol-gel routes to metal oxide nanoparticles. , 2007, Accounts of chemical research.

[39]  W. G. van der Wiel,et al.  Magnetic effects at the interface between non-magnetic oxides. , 2007, Nature materials.

[40]  R. Ramesh,et al.  Multiferroics: progress and prospects in thin films. , 2007, Nature materials.

[41]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[42]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[43]  M. Gajek,et al.  Spintronics with multiferroics , 2006, INTERMAG 2006 - IEEE International Magnetics Conference.

[44]  R. Cava,et al.  Structure and magnetic properties of hollandite Ba1.2Mn8O16 , 2006 .

[45]  N. Mathur,et al.  Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3 , 2005, Science.

[46]  Youichi Murakami,et al.  Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4 , 2005, Nature.

[47]  D. Sinclair,et al.  Synthesis, Crystal Structure, and Characterization of Ba(Ti1/2Mn1/2)O3: A High Permittivity 12R‐Type Hexagonal Perovskite. , 2004 .

[48]  S. Cheong,et al.  Electric polarization reversal and memory in a multiferroic material induced by magnetic fields , 2004, Nature.

[49]  D. Sinclair,et al.  Synthesis, Crystal Structure, and Characterization of Ba(Ti1/2Mn1/2)O3: A High Permittivity 12R-Type Hexagonal Perovskite , 2004 .

[50]  Takeshi Egami,et al.  Underneath the Bragg Peaks , 2003 .

[51]  Derek C. Sinclair,et al.  Giant Barrier Layer Capacitance Effects in CaCu3Ti4O12 Ceramics , 2002 .

[52]  A. Prieto,et al.  New Barium Manganese Titanates Prepared under Reducing Conditions. , 2002 .

[53]  C. Murray,et al.  Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. , 2001, Journal of the American Chemical Society.

[54]  W. S. Graswinckel,et al.  Optical Response of High-Dielectric-Constant Perovskite-Related Oxide , 2001, Science.

[55]  G. Tian Antiferromagnetic correlation in the half-filled strongly correlated electron models at nonzero temperature: A rigorous result , 2001 .

[56]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[57]  Abrahams Systematic prediction of new inorganic ferroelectrics in point group 4. , 1999, Acta crystallographica. Section B, Structural science.

[58]  Bradley F. Chmelka,et al.  Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks , 1998, Nature.

[59]  John M. Hughes,et al.  Redledgeite, Ba x ([Cr,Fe,V] (super 3+) 2x Ti (sub 8-2x) )O 16 , the I4/m structure and elucidation of the sequence of tunnel Ba cations , 1997 .

[60]  Robert W. Schwartz,et al.  Chemical Solution Deposition of Perovskite Thin Films , 1997 .

[61]  X. Bohigas,et al.  Magnetocaloric effect in La0.67Ca0.33MnOδ and La0.60Y0.07Ca0.33MnOδ bulk materials , 1996 .

[62]  I. Grey,et al.  Preparation and structure refinement of synthetic Ti (super 3+) -containing lindsleyite, BaMn 3 Ti 18 O 38 , 1995 .

[63]  A. Byström,et al.  Crystal Structure of Hollandite , 1949, Nature.