Generating conditional gene knockouts in Plasmodium – a toolkit to produce stable DiCre recombinase-expressing parasite lines using CRISPR/Cas9

Successful establishment of CRISPR/Cas9 genome editing technology in Plasmodium spp. has provided a powerful tool to transform Plasmodium falciparum into a genetically more tractable organism. Conditional gene regulation approaches are required to study the function of gene products critical for growth and erythrocyte invasion of blood stage parasites. Here we employ CRISPR/Cas9 to facilitate use of the dimerisable Cre-recombinase (DiCre) that is frequently used to mediate the excision and loss of loxP-flanked DNA sequences in a rapamycin controlled manner. We describe novel CRISPR/Cas9 transfection plasmids and approaches for the speedy, stable and marker-free introduction of transgenes encoding the DiCre recombinase into genomic loci dispensable for blood stage development. Together these plasmids form a toolkit that will allow the rapid generation of transgenic DiCre-expressing P. falciparum lines in any genetic background. Furthermore, the newly developed 3D7-derived parasite lines, constitutively and stably expressing DiCre, generated using this toolkit will prove useful for the analysis of gene products. Lastly, we introduce an improved treatment protocol that uses a lower rapamycin concentration and shorter treatment times, leading to loxP-guided recombination with close to 100% efficiency within the same replication cycle.

[1]  C. Janse,et al.  Rapid Generation of Marker-Free P. falciparum Fluorescent Reporter Lines Using Modified CRISPR/Cas9 Constructs and Selection Protocol , 2016, PloS one.

[2]  Danny W. Wilson,et al.  Conditional expression of apical membrane antigen 1 in Plasmodium falciparum shows it is required for erythrocyte invasion by merozoites , 2014, Cellular microbiology.

[3]  C. Janse,et al.  Removal of Heterologous Sequences from Plasmodium falciparum Mutants Using FLPe-Recombinase , 2010, PloS one.

[4]  H. Stunnenberg,et al.  Three Members of the 6-cys Protein Family of Plasmodium Play a Role in Gamete Fertility , 2010, PLoS pathogens.

[5]  M. Grainger,et al.  RON12, a novel Plasmodium-specific rhoptry neck protein important for parasite proliferation , 2013, Cellular microbiology.

[6]  A. Bell,et al.  Roles of peptidyl-prolyl cis-trans isomerase and calcineurin in the mechanisms of antimalarial action of cyclosporin A, FK506, and rapamycin. , 1994, Biochemical pharmacology.

[7]  X. Su,et al.  Efficient Editing of Malaria Parasite Genome Using the CRISPR/Cas9 System , 2014, mBio.

[8]  D. Conway,et al.  Evidence of non-neutral polymorphism in Plasmodium falciparum gamete surface protein genes Pfs47 and Pfs48/45. , 2007, Molecular and biochemical parasitology.

[9]  M. Sajid,et al.  A Novel ‘Gene Insertion/Marker Out’ (GIMO) Method for Transgene Expression and Gene Complementation in Rodent Malaria Parasites , 2011, PloS one.

[10]  M. Llinás,et al.  Epigenetic switches in clag3 genes mediate blasticidin S resistance in malaria parasites , 2013, Cellular microbiology.

[11]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[12]  A. Holder,et al.  Inducible Knockdown of Plasmodium Gene Expression Using the glmS Ribozyme , 2013, PloS one.

[13]  A. Holder,et al.  Subcellular Location, Phosphorylation and Assembly into the Motor Complex of GAP45 during Plasmodium falciparum Schizont Development , 2012, PloS one.

[14]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[15]  C. MacPherson,et al.  Flexible guide-RNA design for CRISPR applications using Protospacer Workbench , 2015, Nature Biotechnology.

[16]  M. Llinás,et al.  A Tetracycline-Repressible Transactivator System to Study Essential Genes in Malaria Parasites , 2012, Cell host & microbe.

[17]  S. Müller,et al.  Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle , 2013, Molecular microbiology.

[18]  M. Blackman,et al.  A versatile strategy for rapid conditional genome engineering using loxP sites in a small synthetic intron in Plasmodium falciparum , 2016, Scientific Reports.

[19]  D. Kwiatkowski,et al.  Spread of artemisinin resistance in Plasmodium falciparum malaria. , 2014, The New England journal of medicine.

[20]  B. Bergmann,et al.  A genetic system to study Plasmodium falciparum protein function , 2017, Nature Methods.

[21]  Yung Shwen Ho,et al.  Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes , 2012, Proceedings of the National Academy of Sciences.

[22]  Elizabeth A. Lawrence,et al.  Malaria parasites utilize both homologous recombination and alternative end joining pathways to maintain genome integrity , 2013, Nucleic acids research.

[23]  Victoria C. Corey,et al.  UDP-galactose and Acetyl-CoA transporters as Plasmodium multidrug resistance genes , 2016, Nature Microbiology.

[24]  P. Gerold,et al.  Structural analysis of the glycosyl-phosphatidylinositol membrane anchor of the merozoite surface proteins-1 and -2 of Plasmodium falciparum. , 1996, Molecular and biochemical parasitology.

[25]  D. Goldberg,et al.  An FKBP destabilization domain modulates protein levels in Plasmodium falciparum , 2007, Nature Methods.

[26]  C. MacPherson,et al.  Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system , 2014, Nature Biotechnology.

[27]  M. Meissner,et al.  Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms , 2012, Nature Methods.

[28]  A. Enjalbert,et al.  Regulation of Cre recombinase by ligand-induced complementation of inactive fragments. , 2003, Nucleic acids research.

[29]  S. Thiberge,et al.  Conditional mutagenesis using site-specific recombination in Plasmodium berghei. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Ulrike Winkler,et al.  Split-CreERT2: Temporal Control of DNA Recombination Mediated by Split-Cre Protein Fragment Complementation , 2009, PloS one.

[31]  M. Blackman,et al.  The Plasmodium falciparum rhoptry protein RhopH3 plays essential roles in host cell invasion and nutrient uptake , 2017, eLife.

[32]  R. Sauerwein,et al.  The Human Malaria Parasite Pfs47 Gene Mediates Evasion of the Mosquito Immune System , 2013, Science.

[33]  Danny W. Wilson,et al.  Essential Role of the PfRh5/PfRipr/CyRPA Complex during Plasmodium falciparum Invasion of Erythrocytes. , 2016, Cell host & microbe.

[34]  L. Symington,et al.  DNA Repair Mechanisms and Their Biological Roles in the Malaria Parasite Plasmodium falciparum , 2014, Microbiology and Molecular Reviews.

[35]  T. Wellems,et al.  Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. , 2001, Nucleic acids research.

[36]  Frank Seeber,et al.  Faculty Opinions recommendation of Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum. , 2016 .

[37]  Kwaku Poku Asante,et al.  A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. , 2012, The New England journal of medicine.

[38]  F. Frischknecht,et al.  Zinc finger nuclease-based double-strand breaks attenuate malaria parasites and reveal rare microhomology-mediated end joining , 2015, Genome Biology.

[39]  W. Trager,et al.  Human malaria parasites in continuous culture. , 1976, Science.

[40]  A redesigned CRISPR/Cas9 system for marker-free genome editing in Plasmodium falciparum , 2016, Parasites & Vectors.

[41]  J. Wagner,et al.  Versatile control of Plasmodium falciparum gene expression with an inducible protein-RNA interaction , 2014, Nature Communications.

[42]  D. A. Hill,et al.  A blasticidin S-resistant Plasmodium falciparum mutant with a defective plasmodial surface anion channel , 2007, Proceedings of the National Academy of Sciences.

[43]  H. Saibil,et al.  Processing of Plasmodium falciparum Merozoite Surface Protein MSP1 Activates a Spectrin-Binding Function Enabling Parasite Egress from RBCs , 2015, Cell host & microbe.

[44]  R. Sinden,et al.  A Plasmodium falciparum Strain Expressing GFP throughout the Parasite's Life-Cycle , 2010, PloS one.

[45]  M. Blackman,et al.  Regulation and Essentiality of the StAR-related Lipid Transfer (START) Domain-containing Phospholipid Transfer Protein PFA0210c in Malaria Parasites* , 2016, The Journal of Biological Chemistry.

[46]  M. Yazawa,et al.  A photoactivatable Cre-loxP recombination system for optogenetic genome engineering. , 2016, Nature chemical biology.