Sea Surface Winds over the Mediterranean Basin from Satellite Data (2000–04): Meso- and Local-Scale Features on Annual and Seasonal Time Scales

Abstract This paper investigates the mean spatial features of the winds in the Mediterranean and Black Seas using the wind fields observed by the SeaWinds scatterometer. Five years (2000–04) of data have been analyzed on annual and seasonal basis, with particular attention paid to the meso- and local scales. The fields show the existence of structured regional wind systems—in particular, the mistral in the western Mediterranean and the etesians in the Levantine Basin, which are characterized, respectively, by high wind variability and moderate steadiness and by low wind variability and high steadiness. Estimated seasonal mean wind stress τ fields show that the values falling in the top range 0.15 < τ < 0.20 N m−2 affect a large portion of the Mediterranean Basin in winter, in the belt extending from the Gulf of Lion up to the Levantine Basin and the northern Black Sea. In the other seasons, only few regions experience such high values of τ. The analysis of the wind vorticity shows and quantifies the main ...

[1]  Michael J. Caruso,et al.  Evaluation of Wind Vectors Observed by QuikSCAT/SeaWinds Using Ocean Buoy Data , 2002 .

[2]  Pinhas Alpert,et al.  The factors governing the summer regime of the eastern Mediterranean , 2004 .

[3]  Marcos Portabella,et al.  Rain Detection and Quality Control of SeaWinds , 2001 .

[4]  Vesna Jurčec,et al.  On mesoscale characteristics of bora conditions in Yugoslavia , 1980 .

[5]  S. Zecchetto,et al.  The spatial structure of the Mediterranean Sea winds revealed by ERS-1 scatterometer , 2001 .

[6]  Carl A. Mears,et al.  Detecting rain with QuikScat , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[7]  Michael H. Freilich,et al.  Wind Stress Curl and Wind Stress Divergence Biases from Rain Effects on QSCAT Surface Wind Retrievals , 2004 .

[8]  A. Lavagnini,et al.  Wind climatology between 950 and 500 hPa over the Mediterranean area above Italy , 1993 .

[9]  I. Orlanski A rational subdivision of scales for atmospheric processes , 1975 .

[10]  C. Anagnostopoulou,et al.  A 40‐year climatological study of relative vorticity distribution over the Mediterranean , 2001 .

[11]  C. Anagnostopoulou,et al.  A 40 year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution , 2001 .

[12]  S. Nickovic,et al.  Intercomparison of satellite observations and atmospheric model simulations of a meso-scale cyclone in the Mediterranean Sea , 2002 .

[13]  A. Jansà,et al.  A catalogue and a classification of surface cyclones for the Western Mediterranean , 2000 .

[14]  Michael H. Freilich,et al.  Scatterometer-Based Assessment of 10-m Wind Analyses from the Operational ECMWF and NCEP Numerical Weather Prediction Models , 2005 .

[15]  Mark A. Bourassa,et al.  SeaWinds validation with research vessels , 2003 .

[16]  Isabel F. Trigo,et al.  Climatology of Cyclogenesis Mechanisms in the Mediterranean , 2002 .

[17]  Philippe Drobinski,et al.  An Observational Study of the Mesoscale Mistral Dynamics , 2005 .

[18]  T. Kasparis,et al.  Oceanic rain rate estimates from the QuikSCAT Radiometer: A Global Precipitation Mission pathfinder , 2005 .

[19]  K. Pandžić,et al.  Eastern Adriatic typical wind field patterns and large‐scale atmospheric conditions , 2005 .

[20]  R. Trigo,et al.  Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria , 2016 .

[21]  Duncan B. Ross,et al.  Chapter 4 Oceanic Surface Winds , 1985 .

[22]  David G. Long,et al.  An assessment of SeaWinds on QuikSCAT wind retrieval , 2002 .

[23]  P. Alpert,et al.  Climatological analysis of Mediterranean cyclones using ECMWF data , 1990 .

[24]  P. May Climatological Flux Estimates in the Mediterranean Sea. Part I. Winds and Wind Stresses , 1982 .

[25]  吉野 正敏 Local wind bora , 1976 .

[26]  W. Liu,et al.  Bulk Parameterization of Air-Sea Exchanges of Heat and Water Vapor Including the Molecular Constraints at the Interface , 1979 .

[27]  C. Garrett,et al.  Interannual Variability in Mediterranean Heat and Buoyancy Fluxes , 1993 .

[28]  D. Chelton,et al.  Satellite Measurements Reveal Persistent Small-Scale Features in Ocean Winds , 2004, Science.

[29]  E. Salusti Satellite images of upwellings and cold filament dynamics as transient effects of violent air-sea interactions downstream from the island of Sardinia , 1998 .

[30]  S. Tibaldi,et al.  Cyclogenesis in the lee of the Alps: A case study , 1978 .

[31]  The nature of the mistral: Observations and modelling of two MAP events , 2003 .

[32]  Distribution of the Mistral: A satellite observation , 1987 .

[33]  N. Wells,et al.  THE ATMOSPHERE AND OCEAN: A Physical Introduction , 1986 .

[34]  Bryan W. Stiles,et al.  Impact of rain on spaceborne Ku-band wind scatterometer data , 2002, IEEE Trans. Geosci. Remote. Sens..

[35]  Silas Michaelides,et al.  Spatial distribution of some dynamic parameters during the evolution of selected depressions over the area of Cyprus , 2004 .

[36]  Ronald B. Smith Aerial Observations of the Yugoslavian Bora , 1987 .

[37]  Wenqing Tang,et al.  QuikSCAT Satellite Comparisons with Nearshore Buoy Wind Data off the U.S. West Coast , 2003 .

[38]  Peter J. Minnett,et al.  An overview of MODIS capabilities for ocean science observations , 1998, IEEE Trans. Geosci. Remote. Sens..

[39]  A. Speranza,et al.  Offshore wind climatology over the Mediterranean basin , 2006 .

[40]  Allan R. Robinson,et al.  Ocean processes in climate dynamics : global and mediterranean examples , 1994 .

[41]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .