The Gaia-ESO survey: Calibrating a relationship between age and the [C/N] abundance ratio with open clusters

Context. In the era of large high-resolution spectroscopic surveys such as Gaia-ESO and APOGEE, high-quality spectra can contribute to our understanding of the Galactic chemical evolution by providing abundances of elements that belong to the different nucleosynthesis channels, and also by providing constraints to one of the most elusive astrophysical quantities: stellar age. Aims. Some abundance ratios, such as [C/N], have been proven to be excellent indicators of stellar ages. We aim at providing an empirical relationship between stellar ages and [C/N] using open star clusters, observed by the Gaia-ESO and APOGEE surveys, as calibrators. Methods. We used stellar parameters and abundances from the Gaia-ESO Survey and APOGEE Survey of the Galactic field and open cluster stars. Ages of star clusters were retrieved from the literature sources and validated using a common set of isochrones. We used the same isochrones to determine for each age and metallicity the surface gravity at which the first dredge-up and red giant branch bump occur. We studied the effect of extra-mixing processes in our sample of giant stars, and we derived the mean [C/N] in evolved stars, including only stars without evidence of extra mixing. By combining the Gaia-ESO and APOGEE samples of open clusters, we derived a linear relationship between [C/N] and (logarithmic) cluster ages. Results. We apply our relationship to selected giant field stars in the Gaia-ESO and APOGEE surveys. We find an age separation between thin- and thick-disc stars and age trends within their populations, with an increasing age towards lower metallicity populations. Conclusions. With this empirical relationship, we are able to provide an age estimate for giant stars in which C and N abundances are measured. For giant stars, the isochrone fitting method is indeed less sensitive than for dwarf stars at the turn-off. Our method can therefore be considered as an additional tool to give an independent estimate of the age of giant stars. The uncertainties in their ages is similar to those obtained using isochrone fitting for dwarf stars.

[1]  D. A. García-Hernández,et al.  Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. II. Atomic Diffusion in M67 Stars , 2019, The Astrophysical Journal.

[2]  M. Tsantaki,et al.  Abundance to age ratios in the HARPS-GTO sample with Gaia DR2 , 2019, Astronomy & Astrophysics.

[3]  D. A. García-Hernández,et al.  Constraining Metallicity-dependent Mixing and Extra Mixing Using [C/N] in Alpha-rich Field Giants , 2019, The Astrophysical Journal.

[4]  T. Beers,et al.  APOGEE [C/N] Abundances across the Galaxy: Migration and Infall from Red Giant Ages , 2018, The Astrophysical Journal.

[5]  M. Hayden,et al.  The GALAH survey and Gaia DR2: dissecting the stellar disc’s phase space by age, action, chemistry, and location , 2018, Monthly Notices of the Royal Astronomical Society.

[6]  S. Randich,et al.  The double population of Chamaeleon I detected by Gaia DR2 , 2018, Astronomy & Astrophysics.

[7]  D. A. García-Hernández,et al.  The Open Cluster Chemical Abundances and Mapping Survey. II. Precision Cluster Abundances for APOGEE Using SDSS DR14 , 2018, The Astronomical Journal.

[8]  Italy.,et al.  The Gaia DR2 view of the Gamma Velorum cluster: resolving the 6D structure , 2018, Astronomy & Astrophysics.

[9]  R. Carrera,et al.  A Chemical and Kinematical Analysis of the Intermediate-age Open Cluster IC 166 from APOGEE and Gaia DR2 , 2018, The Astronomical Journal.

[10]  Gang Zhao,et al.  The Formation and Evolution of Galactic Disks with APOGEE and the Gaia Survey , 2018, The Astrophysical Journal.

[11]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: the origin and evolution of s-process elements , 2018, Astronomy & Astrophysics.

[12]  S. Martell,et al.  The Gaia-ESO Survey: impact of extra mixing on C and N abundances of giant stars , 2018, Astronomy & Astrophysics.

[13]  C. Bailer-Jones,et al.  Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2 , 2018, The Astronomical Journal.

[14]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[15]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[16]  D. A. García-Hernández,et al.  Age-resolved chemistry of red giants in the solar neighbourhood , 2018, 1803.06352.

[17]  P. Moroni,et al.  Theoretical uncertainties on the radius of low- and very-low-mass stars , 2018, 1802.04550.

[18]  S. Randich,et al.  The Gaia-ESO Survey: open clusters in Gaia-DR1 , 2017, Astronomy & Astrophysics.

[19]  J. Bean,et al.  The temporal evolution of neutron-capture elements in the Galactic discs , 2017, 1711.03643.

[20]  F. Grundahl,et al.  High-precision abundances of elements in Kepler LEGACY stars. Verification of trends with stellar age , 2017, 1710.03544.

[21]  KULeuven,et al.  The [Y/Mg] clock works for evolved solar metallicity stars , 2017, 1707.08585.

[22]  J. Bovy,et al.  The age–metallicity structure of the Milky Way disc using APOGEE , 2017, 1706.00018.

[23]  C. Gonz'alez-Fern'andez,et al.  NGC 6067: a young and massive open cluster with high metallicity , 2017, 1704.01548.

[24]  A. Bragaglia,et al.  The Gaia-ESO Survey: radial distribution of abundances in the Galactic disc from open clusters and young-field stars , 2017, 1703.00762.

[25]  Aniruddha R. Thakar,et al.  Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.

[26]  A. Robin,et al.  Population synthesis to constrain Galactic and stellar physics - I. Determining age and mass of thin-disc red-giant stars , 2017, 1702.01769.

[27]  Sergey E. Koposov,et al.  The Gaia -ESO survey: The inner disk intermediate-age open cluster NGC 6802 , 2017, 1702.01109.

[28]  E. Grebel,et al.  Observing the products of stellar evolution in the old open cluster M67 with APOGEE , 2017, 1701.00979.

[29]  Astronomy,et al.  On the metallicity dependence of the [Y/Mg]–age relation for solar-type stars , 2016, 1610.03852.

[30]  Y. Elsworth,et al.  Nitrogen depletion in field red giants: mixing during the He flash? , 2016, 1610.03286.

[31]  G. Carraro,et al.  The Gaia-ESO Survey: the inner disk, intermediate-age open cluster Trumpler 23 , 2016, 1611.00859.

[32]  E. Pancino,et al.  The gaia -ESO survey : Calibration strategy , 2016, 1610.06480.

[33]  D. Kawata,et al.  Tracing the Hercules stream with Gaia and LAMOST : new evidence for a fast bar in the Milky Way , 2016, 1610.05342.

[34]  H. Rix,et al.  Masses and Ages for 230,000 LAMOST Giants, via Their Carbon and Nitrogen Abundances , 2016, 1609.03195.

[35]  H. T. Zhang,et al.  Activity indicators and stellar parameters of the Kepler targets.An application of the ROTFIT pipeline to LAMOST-Kepler stellar spectra , 2016, 1606.09149.

[36]  M. Asplund,et al.  Nucleosynthetic history of elements in the Galactic disk - [X/Fe]–age relations from high-precision spectroscopy , 2016, 1606.04842.

[37]  A. Bragaglia,et al.  TheGaia-ESO Survey: Probes of the inner disk abundance gradient , 2016, Astronomy & Astrophysics.

[38]  M. T. Maia,et al.  The Solar Twin Planet Search III. The [Y/Mg] clock: estimating stellar ages of solar-type stars , 2016, 1604.05733.

[39]  D. A. García-Hernández,et al.  Red giant masses and ages derived from carbon and nitrogen abundances , 2015, 1511.08203.

[40]  Nicholas Troup,et al.  ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE , 2015, 1510.07635.

[41]  C. Soubiran,et al.  On the metallicity of open clusters. III. Homogenised sample , 2015, 1511.08884.

[42]  H. Rix,et al.  SPECTROSCOPIC DETERMINATION OF MASSES (AND IMPLIED AGES) FOR RED GIANTS , 2015, 1511.08204.

[43]  Liverpool John Moores University,et al.  Post first dredge-up [C/N] ratio as age indicator. Theoretical calibration , 2015, 1509.06904.

[44]  Chao Liu,et al.  Candidate members of star clusters from LAMOST DR2 , 2015 .

[45]  D. Latham,et al.  STELLAR RADIAL VELOCITIES IN THE OLD OPEN CLUSTER M67 (NGC 2682). I. MEMBERSHIPS, BINARIES, AND KINEMATICS , 2015, 1507.01949.

[46]  G. Carraro,et al.  The Gaia-ESO Survey: Insights into the inner-disc evolution from open clusters , 2015, 1505.04039.

[47]  Jonathan C. Bird,et al.  CHEMICAL CARTOGRAPHY WITH APOGEE: METALLICITY DISTRIBUTION FUNCTIONS AND THE CHEMICAL STRUCTURE OF THE MILKY WAY DISK , 2015, 1503.02110.

[48]  G. Gilmore,et al.  Carbon, nitrogen and α-element abundances determine the formation sequence of the Galactic thick and thin discs , 2015, 1503.00537.

[49]  U. Munari,et al.  The GALAH survey: scientific motivation , 2015, Monthly Notices of the Royal Astronomical Society.

[50]  Annie C. Robin,et al.  ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY , 2015, 1501.04110.

[51]  G. Carraro,et al.  The Gaia-ESO Survey: CNO abundances in the open clusters Trumpler 20, NGC 4815, and NGC 6705 , 2014, 1411.2831.

[52]  R. Carrera,et al.  The old, metal-poor, anticentre open cluster Trumpler 5 ? , 2014, 1411.0717.

[53]  F. Grundahl,et al.  Spectroscopic Study of the Open Cluster NGC 6811 , 2014, 1409.5132.

[54]  L. Pasquini,et al.  The Gaia-ESO Survey: the analysis of high-resolution UVES spectra of FGK-type stars , 2014, 1409.0568.

[55]  R. S. Ram,et al.  LINE LISTS FOR THE A2Π–X2Σ+ (RED) AND B2Σ+–X2Σ+ (VIOLET) SYSTEMS OF CN, 13C14N, AND 12C15N, AND APPLICATION TO ASTRONOMICAL SPECTRA , 2014, 1408.3828.

[56]  B. Tofflemire,et al.  WIYN OPEN CLUSTER STUDY. LIX. RADIAL VELOCITY MEMBERSHIP OF THE EVOLVED POPULATION OF THE OLD OPEN CLUSTER NGC 6791 , 2014, 1408.3117.

[57]  M. Irwin,et al.  The Gaia-ESO Survey: Stellar content and elemental abundances in the massive cluster NGC 6705 , 2014, 1407.1510.

[58]  S. Meibom,et al.  OPEN CLUSTERS IN THE KEPLER FIELD. II. NGC 6866 , 2014, 1403.7208.

[59]  S. Hekker,et al.  ASTEROSEISMIC STUDY ON CLUSTER DISTANCE MODULI FOR RED GIANT BRANCH STARS IN NGC 6791 AND NGC 6819 , 2014, 1403.5838.

[60]  C. Babusiaux,et al.  The Gaia-ESO Survey: processing FLAMES-UVES spectra , 2014 .

[61]  Sergey E. Koposov,et al.  Gaia-ESO Survey: Properties of the intermediate age open cluster NGC 4815 , 2014, 1403.7451.

[62]  Xin-Hua Gao,et al.  Membership determination of open cluster NGC 188 based on the DBSCAN clustering algorithm , 2014 .

[63]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: Reevaluation of the parameters of the open cluster Trumpler 20 using photometry and spectroscopy , 2013, 1312.3925.

[64]  N. V. Kharchenko,et al.  Global survey of star clusters in the Milky Way II. The catalogue of basic parameters , 2013, 1308.5822.

[65]  Peter F. Bernath,et al.  Line strengths and updated molecular constants for the C2 Swan system , 2012, 1212.2102.

[66]  Tenerife,et al.  Radial velocities and metallicities from infrared Ca II triplet spectroscopy of open clusters: Berkeley 26, Berkeley 70, NGC 1798, and NGC 2266 , 2012, 1207.3244.

[67]  S. Ekstrom,et al.  Thermohaline instability and rotation-induced mixing - III. Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars of various metallicities , 2012, 1204.5193.

[68]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[69]  S. Degl'Innocenti,et al.  The Pisa Stellar Evolution Data Base for low-mass stars , 2012, 1202.4864.

[70]  E. Friel,et al.  A CHEMICAL ABUNDANCE STUDY OF 10 OPEN CLUSTERS BASED ON WIYN-HYDRA SPECTROSCOPY , 2011, 1107.4139.

[71]  Garching,et al.  Three new bricks in the wall: Berkeley 23, Berkeley 31 and King 8 , 2011, 1105.4440.

[72]  S. Meibom,et al.  NGC 6811: AN INTERMEDIATE-AGE CLUSTER IN THE KEPLER FIELD , 2011 .

[73]  Liverpool John Moores University,et al.  Lithium abundance in the globular cluster M4: from the turn‐off to the red giant branch bump , 2010, 1010.3879.

[74]  P. Eggenberger,et al.  Effects of rotational mixing on the asteroseismic properties of solar-type stars , 2010, 1009.4541.

[75]  C. Charbonnel,et al.  Thermohaline instability and rotation-induced mixing I. Low- and intermediate-mass solar metallicity stars up to the end of the AGB , 2010, 1006.5359.

[76]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[77]  E. Rossetti,et al.  Chemical abundance analysis of the open clusters Cr 110, NGC 2099 (M 37), NGC 2420, NGC 7789, and M 67 (NGC 2682) , 2009, 0910.0723.

[78]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[79]  Sang Chul Kim,et al.  NEAR-INFRARED PHOTOMETRIC STUDY OF THE OLD OPEN CLUSTER TRUMPLER 5 , 2009, 0912.4588.

[80]  B. Mihov,et al.  The open cluster Berkeley 53 , 2009, 0908.2950.

[81]  F. Grundahl,et al.  Signatures of intrinsic Li depletion and Li-Na anti-correlation in the metal-poor globular cluster NGC 6397 , , 2009, 0906.2876.

[82]  L. Deng,et al.  Lithium depletion in late-type dwarfs , 2009 .

[83]  Sang Chul Kim,et al.  U BV I CCD PHOTOMETRY OF THE OLD OPEN CLUSTER NGC 1193 , 2008, 0812.1774.

[84]  S. Martell,et al.  DEEP MIXING AND METALLICITY: CARBON DEPLETION IN GLOBULAR CLUSTER GIANTS , 2008, 0809.4470.

[85]  S. Udry,et al.  Red giants in open clusters - XIV. Mean radial velocities for 1309 stars and 166 open clusters , 2008 .

[86]  Avid,et al.  UBV I CCD PHOTOMETRY OF THE OLD OPEN CLUSTER NGC 1193 , 2008 .

[87]  G. Maciejewski,et al.  CCD BV survey of 42 open clusters , 2007, 0704.1364.

[88]  D. Tucker,et al.  A Survey of Open Clusters in the u′g′r′i′z′ Filter System. III. Results for the Cluster NGC 188 , 2006, astro-ph/0611900.

[89]  A. Pietrinferni,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. II. Stellar Models and Isochrones for an α-enhanced Metal Distribution , 2006, astro-ph/0603721.

[90]  G. Carraro,et al.  Photometry of seven overlooked open clusters in the first and fourth Galactic quadrants , 2006, astro-ph/0602256.

[91]  A. Bragaglia,et al.  The Bologna Open Cluster Chemical Evolution Project: Midterm Results from the Photometric Sample , 2005, astro-ph/0511020.

[92]  C. Charbonnel,et al.  Hydrodynamical stellar models including rotation, internal gravity waves, and atomic diffusion - I. Formalism and tests on Pop I dwarfs , 2005 .

[93]  E. Friel,et al.  Abundances of Red Giants in Old Open Clusters. II. Berkeley 17 , 2005 .

[94]  Stalon,et al.  Hydrodynamical stellar models including rotation, internal gravity waves and atomic diffusion. I. Formalism and tests on Pop I dwarfs , 2005, astro-ph/0505229.

[95]  G. Carraro,et al.  Metal Abundances in Extremely Distant Galactic Old Open Clusters. II. Berkeley 22 and Berkeley 66 , 2005, astro-ph/0504282.

[96]  M. Asplund,et al.  The Solar Chemical Composition , 2004, astro-ph/0410214.

[97]  S. Cassisi,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. I. Scaled Solar Models and Isochrones , 2004, astro-ph/0405193.

[98]  Garching,et al.  The age of the oldest Open Clusters , 2003, astro-ph/0310363.

[99]  Nathan D. Miller,et al.  Metallicities of Old Open Clusters , 2002 .

[100]  A. Moitinho,et al.  New catalogue of optically visible open clusters and candidates , 2002, astro-ph/0203351.

[101]  M. Mayor,et al.  Red giants in open clusters ? IX. NGC 2324, 2818, 3960 and 6259 , 2001 .

[102]  R. L. Peterson,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[103]  H. S. Park,et al.  UBVI charge-coupled device photometry of two old open clusters NGC 1798 and 2192 , 1999 .

[104]  D. Geisler,et al.  A Photometric and Spectroscopic Study of the Southern Open Clusters Pismis 18, Pismis 19, NGC 6005, and NGC 6253 , 1998 .

[105]  The Old Open Cluster, Berkeley 66 , 1996 .

[106]  J. Faulkner,et al.  Lithium dilution through main-sequence mass loss , 1992 .

[107]  M. Pinsonneault,et al.  Evolutionary models of halo stars with rotation. II: Effects of metallicity on lithium depletion and possible implications for the primordial lithium abundance , 1992 .

[108]  S. Balachandran Lithium depletion and rotation in main-sequence stars , 1990 .

[109]  G. Michaud The lithium abundance gap in the Hyades F stars - The signature of diffusion , 1986 .