Artificial Intelligence Enabled Radio Propagation for Communications—Part I: Channel Characterization and Antenna-Channel Optimization

To provide higher data rates, as well as better coverage, cost efficiency, security, adaptability, and scalability, the 5G and beyond 5G networks are developed with various artificial intelligence (AI) techniques. In this two-part article, we investigate the application of AI and, in particular, machine learning (ML) to the study of wireless propagation channels. It first provides a comprehensive overview of ML for channel characterization and ML-based antenna–channel optimization in this first part, and then, it gives a state-of-the-art literature review of channel scenario identification and channel modeling in Part II. Fundamental results and key concepts of ML for communication networks are presented, and widely used ML methods for channel data processing, propagation channel estimation, and characterization are analyzed and compared. A discussion of challenges and future research directions for ML-enabled next-generation networks of the topics covered in this part rounds off this article.

[1]  Claude Oestges,et al.  Artificial Intelligence Enabled Radio Propagation for Communications—Part II: Scenario Identification and Channel Modeling , 2021, IEEE Transactions on Antennas and Propagation.

[2]  Bo Ai,et al.  Wireless Channel Sparsity: Measurement, Analysis, and Exploitation in Estimation , 2021, IEEE Wireless Communications.

[3]  M. Meenakshi,et al.  A New Modeling Methodology for Multipath Parameter Estimation in Ultrawideband Channels , 2021, IEEE Transactions on Antennas and Propagation.

[4]  Li-xin Guo,et al.  Efficient RCS Prediction of the Conducting Target Based on Physics-Inspired Machine Learning and Experimental Design , 2021, IEEE Transactions on Antennas and Propagation.

[5]  Chengxiang Wang,et al.  A Novel B5G Frequency Nonstationary Wireless Channel Model , 2021, IEEE Transactions on Antennas and Propagation.

[6]  Li Pei,et al.  Machine-Learning-Based Fast Angle-of-Arrival Recognition for Vehicular Communications , 2021, IEEE Transactions on Vehicular Technology.

[7]  Claude Oestges,et al.  Geometry-Cluster-Based Stochastic MIMO Model for Vehicle-to-Vehicle Communications in Street Canyon Scenarios , 2021, IEEE Transactions on Wireless Communications.

[8]  Xiqi Gao,et al.  6G Wireless Channel Measurements and Models: Trends and Challenges , 2020, IEEE Vehicular Technology Magazine.

[9]  Fredrik Tufvesson,et al.  6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities , 2020, Proceedings of the IEEE.

[10]  Hua Feng,et al.  Adaptive and Intelligent Digital Signal Processing for Improved Optical Interconnection , 2020 .

[11]  Bo Liu,et al.  Automatic AI-Driven Design of Mutual Coupling Reducing Topologies for Frequency Reconfigurable Antenna Arrays , 2020, IEEE Transactions on Antennas and Propagation.

[12]  Chen Yu,et al.  Multilayer Machine Learning-Assisted Optimization-Based Robust Design and Its Applications to Antennas and Array , 2020, IEEE Transactions on Antennas and Propagation.

[13]  Bo Ai,et al.  Measurements and Cluster-Based Modeling of Vehicle-to-Vehicle Channels With Large Vehicle Obstructions , 2020, IEEE Transactions on Wireless Communications.

[14]  Yu Zhang,et al.  Clustering Analysis in the Wireless Propagation Channel with a Variational Gaussian Mixture Model , 2020, IEEE Transactions on Big Data.

[15]  Gert Frølund Pedersen,et al.  Trajectory-Aided Maximum-Likelihood Algorithm for Channel Parameter Estimation in Ultrawideband Large-Scale Arrays , 2020, IEEE Transactions on Antennas and Propagation.

[16]  Yonglin Xue,et al.  Efficient Selection on Spatial Modulation Antennas: Learning or Boosting , 2020, IEEE Wireless Communications Letters.

[17]  Sang Hyun Park,et al.  Deep Learning-Based mmWave Beam Selection for 5G NR/6G With Sub-6 GHz Channel Information: Algorithms and Prototype Validation , 2020, IEEE Access.

[18]  Bo Ai,et al.  Clustering Performance Evaluation Algorithm for Vehicle-to-Vehicle Radio Channels , 2020, 2020 14th European Conference on Antennas and Propagation (EuCAP).

[19]  Jie Huang,et al.  A Big Data Enabled Channel Model for 5G Wireless Communication Systems , 2020, IEEE Transactions on Big Data.

[20]  Alberto Testolin,et al.  Machine Learning-Aided Design Of Thinned Antenna Arrays For Optimized Network Level Performance , 2020, 2020 14th European Conference on Antennas and Propagation (EuCAP).

[21]  Hans D. Schotten,et al.  Machine Learning for Network Slicing Resource Management: A Comprehensive Survey , 2020, ArXiv.

[22]  Haiming Wang,et al.  Multistage Collaborative Machine Learning and its Application to Antenna Modeling and Optimization , 2020, IEEE Transactions on Antennas and Propagation.

[23]  Erik G. Larsson,et al.  Artificial Intelligence Enabled Wireless Networking for 5G and Beyond: Recent Advances and Future Challenges , 2020, IEEE Wireless Communications.

[24]  Bo Ai,et al.  Trajectory-Joint Clustering Algorithm for Time-Varying Channel Modeling , 2020, IEEE Transactions on Vehicular Technology.

[25]  Shengli Fu,et al.  Intelligent Massive MIMO Antenna Selection Using Monte Carlo Tree Search , 2019, IEEE Transactions on Signal Processing.

[26]  R. Tafazolli,et al.  To Learn or Not to Learn: Deep Learning Assisted Wireless Modem Design , 2019, 1909.07791.

[27]  George Goussetis,et al.  Prediction of Channel Excess Attenuation for Satellite Communication Systems at Q-Band Using Artificial Neural Network , 2019, IEEE Antennas and Wireless Propagation Letters.

[28]  Andreas M. Kaplan,et al.  A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence , 2019, California Management Review.

[29]  Applications of Machine Learning in Wireless Communications , 2019 .

[30]  Robert W. Heath,et al.  MmWave Vehicular Beam Selection With Situational Awareness Using Machine Learning , 2019, IEEE Access.

[31]  Kentaro Saito,et al.  Frequency Characteristics of Geometry-Based Clusters in Indoor Hall Environment at SHF Bands , 2019, IEEE Access.

[32]  Yan Li,et al.  Antenna selection for multiple-input multiple-output systems based on deep convolutional neural networks , 2019, PloS one.

[33]  Ausif Mahmood,et al.  Review of Deep Learning Algorithms and Architectures , 2019, IEEE Access.

[34]  N. Yoneda,et al.  Investigation on Current Reduction Effects of Baluns for Measurement of a Small Antenna , 2019, IEEE Transactions on Antennas and Propagation.

[35]  Jelena Senic,et al.  Methodology for Multipath-Component Tracking in Millimeter-Wave Channel Modeling , 2019, IEEE Transactions on Antennas and Propagation.

[36]  Robert W. Heath,et al.  LIDAR Data for Deep Learning-Based mmWave Beam-Selection , 2019, IEEE Wireless Communications Letters.

[37]  Claude Oestges,et al.  A Power-Angle-Spectrum Based Clustering and Tracking Algorithm for Time-Varying Radio Channels , 2019, IEEE Transactions on Vehicular Technology.

[38]  Claude Oestges,et al.  A Novel Target Recognition Based Radio Channel Clustering Algorithm , 2018, 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP).

[39]  Robert W. Heath,et al.  Online Learning for Position-Aided Millimeter Wave Beam Training , 2018, IEEE Access.

[40]  Fredrik Tufvesson,et al.  Random Cluster Number Feature and Cluster Characteristics of Indoor Measurement at 28 GHz , 2018, IEEE Antennas and Wireless Propagation Letters.

[41]  Christian Schneider,et al.  Tracking based Multipath Clustering in Vehicle-to-Infrastructure Channels , 2018, 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).

[42]  Wei Fan,et al.  A Flexible Millimeter-Wave Radio Channel Emulator Design With Experimental Validations , 2018, IEEE Transactions on Antennas and Propagation.

[43]  Wei Fan,et al.  Wireless Cable Method for High-Order MIMO Terminals Based on Particle Swarm Optimization Algorithm , 2018, IEEE Transactions on Antennas and Propagation.

[44]  Zhangdui Zhong,et al.  Analysis of Edge Detection for the Clusters in Radio Propagation Channel , 2018, 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[45]  Guan Gui,et al.  Deep Learning for Super-Resolution Channel Estimation and DOA Estimation Based Massive MIMO System , 2018, IEEE Transactions on Vehicular Technology.

[46]  Xuefeng Yin,et al.  Hough-Transform-Based Cluster Identification and Modeling for V2V Channels Based on Measurements , 2018, IEEE Transactions on Vehicular Technology.

[47]  Jianhua Zhang,et al.  Clustering in wireless propagation channel with a statistics-based framework , 2018, 2018 IEEE Wireless Communications and Networking Conference (WCNC).

[48]  Matteo Cesana,et al.  Transferring knowledge for tilt-dependent radio map prediction , 2018, 2018 IEEE Wireless Communications and Networking Conference (WCNC).

[49]  Zhi Chen,et al.  Data-Driven-Based Analog Beam Selection for Hybrid Beamforming Under mm-Wave Channels , 2018, IEEE Journal of Selected Topics in Signal Processing.

[50]  Tony Q. S. Quek,et al.  Transmit Antenna Selection in MIMO Wiretap Channels: A Machine Learning Approach , 2018, IEEE Wireless Communications Letters.

[51]  Jian Yu,et al.  Clustering Enabled Wireless Channel Modeling Using Big Data Algorithms , 2018, IEEE Communications Magazine.

[52]  Robert W. Heath,et al.  5G MIMO Data for Machine Learning: Application to Beam-Selection Using Deep Learning , 2018, 2018 Information Theory and Applications Workshop (ITA).

[53]  Mohamed-Slim Alouini,et al.  A Survey of Channel Modeling for UAV Communications , 2018, IEEE Communications Surveys & Tutorials.

[54]  En Zhu,et al.  Deep Clustering with Convolutional Autoencoders , 2017, ICONIP.

[55]  Ursula Challita,et al.  Artificial Neural Networks-Based Machine Learning for Wireless Networks: A Tutorial , 2017, IEEE Communications Surveys & Tutorials.

[56]  J. Takada,et al.  Multipath Clustering and Cluster Tracking for Geometry-Based Stochastic Channel Modeling , 2017, IEEE Transactions on Antennas and Propagation.

[57]  Jian Yu,et al.  A Kernel-Power-Density-Based Algorithm for Channel Multipath Components Clustering , 2017, IEEE Transactions on Wireless Communications.

[58]  Zhangdui Zhong,et al.  A Novel Tracking-Based Multipath Component Clustering Algorithm , 2017, IEEE Antennas and Wireless Propagation Letters.

[59]  Zhangdui Zhong,et al.  A novel power weighted multipath component tracking algorithm , 2017, 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS).

[60]  Theodore S. Rappaport,et al.  Small-Scale, Local Area, and Transitional Millimeter Wave Propagation for 5G Communications , 2017, IEEE Transactions on Antennas and Propagation.

[61]  Cheng Deng,et al.  Deep Clustering via Joint Convolutional Autoencoder Embedding and Relative Entropy Minimization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[62]  Bo Ai,et al.  A Framework of Automatic Clustering and Tracking for Time-Variant Multipath Components , 2017, IEEE Communications Letters.

[63]  Jian Yu,et al.  An Automatic Clustering Algorithm for Multipath Components Based on Kernel-Power-Density , 2017, 2017 IEEE Wireless Communications and Networking Conference (WCNC).

[64]  Shuai Zhang,et al.  A Planar Switchable 3-D-Coverage Phased Array Antenna and Its User Effects for 28-GHz Mobile Terminal Applications , 2017, IEEE Transactions on Antennas and Propagation.

[65]  Fredrik Tufvesson,et al.  Tracking of Wideband Multipath Components in a Vehicular Communication Scenario , 2016, IEEE Transactions on Vehicular Technology.

[66]  Jingon Joung,et al.  Machine Learning-Based Antenna Selection in Wireless Communications , 2016, IEEE Communications Letters.

[67]  Giorgio M. Vitetta,et al.  On the Application of Support Vector Machines to the Prediction of Propagation Losses at 169 MHz for Smart Metering Applications , 2016, 1607.05154.

[68]  Theodore S. Rappaport,et al.  3-D Millimeter-Wave Statistical Channel Model for 5G Wireless System Design , 2016, IEEE Transactions on Microwave Theory and Techniques.

[69]  Jian Yu,et al.  On the Clustering of Radio Channel Impulse Responses Using Sparsity-Based Methods , 2016, IEEE Transactions on Antennas and Propagation.

[70]  Wei Chen,et al.  A Sparsity-Based Clustering Framework for Radio Channel Impulse Responses , 2016, 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring).

[71]  Sean Hughes,et al.  Clustering by Fast Search and Find of Density Peaks , 2016 .

[72]  Zhi Ding,et al.  Wireless communications in the era of big data , 2015, IEEE Communications Magazine.

[73]  Claude Oestges,et al.  A Dynamic Wideband Directional Channel Model for Vehicle-to-Vehicle Communications , 2015, IEEE Transactions on Industrial Electronics.

[74]  Thomas Zemen,et al.  Cluster lifetime characterization for vehicular communication channels , 2015, 2015 9th European Conference on Antennas and Propagation (EuCAP).

[75]  Theodore S. Rappaport,et al.  3-D statistical channel model for millimeter-wave outdoor mobile broadband communications , 2015, 2015 IEEE International Conference on Communications (ICC).

[76]  Bidyut Baran Chaudhuri,et al.  A survey of Hough Transform , 2015, Pattern Recognit..

[77]  Wei Wang,et al.  Deep Embedding Network for Clustering , 2014, 2014 22nd International Conference on Pattern Recognition.

[78]  Cyril Decroze,et al.  Antenna Gain and Radiation Pattern Measurements in Reverberation Chamber Using Doppler Effect , 2014, IEEE Transactions on Antennas and Propagation.

[79]  Lars Thiele,et al.  QuaDRiGa: A 3-D Multi-Cell Channel Model With Time Evolution for Enabling Virtual Field Trials , 2014, IEEE Transactions on Antennas and Propagation.

[80]  Leni J. Matos,et al.  The Relevance Vector Machine Applied to the Modeling of Wireless Channels , 2013, IEEE Transactions on Antennas and Propagation.

[81]  M. B. Knudsen,et al.  Antenna Pattern Impact on MIMO OTA Testing , 2013, IEEE Transactions on Antennas and Propagation.

[82]  M. B. Knudsen,et al.  Emulating Spatial Characteristics of MIMO Channels for OTA Testing , 2013, IEEE Transactions on Antennas and Propagation.

[83]  Xiaoli Chu,et al.  Spectral- and energy-efficient antenna tilting in a HetNet using reinforcement learning , 2013, 2013 IEEE Wireless Communications and Networking Conference (WCNC).

[84]  C. Gentile,et al.  Using the Kurtosis Measure to Identify Clusters in Wireless Channel Impulse Responses , 2013, IEEE Transactions on Antennas and Propagation.

[85]  Fernando Perez-Fontan,et al.  Estimation of the Number of Clusters in Multipath Radio Channel Data Sets , 2013, IEEE Transactions on Antennas and Propagation.

[86]  Yiyu Zhou,et al.  An Efficient Maximum Likelihood Method for Direction-of-Arrival Estimation via Sparse Bayesian Learning , 2012, IEEE Transactions on Wireless Communications.

[87]  M. Landmann,et al.  Impact of Incomplete and Inaccurate Data Models on High Resolution Parameter Estimation in Multidimensional Channel Sounding , 2012, IEEE Transactions on Antennas and Propagation.

[88]  Arne Leijon,et al.  Bayesian Estimation of Beta Mixture Models with Variational Inference , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[89]  A. F. Molisch,et al.  Propagation Parameter Estimation, Modeling and Measurements for Ultrawideband MIMO Radar , 2011, IEEE Transactions on Antennas and Propagation.

[90]  Fernando Perez-Fontan,et al.  Clustering of the multipath radio channel parameters , 2011, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP).

[91]  Claude Oestges,et al.  The COST 2100 MIMO channel model , 2011, IEEE Wirel. Commun..

[92]  Daniel N Evans,et al.  Near-Optimal Radiation Patterns for Antenna Diversity , 2010, IEEE Transactions on Antennas and Propagation.

[93]  Gerd Sommerkorn,et al.  Large Scale Parameter for the WINNER II Channel Model at 2.53 GHz in Urban Macro Cell , 2010, 2010 IEEE 71st Vehicular Technology Conference.

[94]  F. Tufvesson,et al.  Spherical Vector Wave Expansion of Gaussian Electromagnetic Fields for Antenna-Channel Interaction Analysis , 2009, IEEE Transactions on Antennas and Propagation.

[95]  Fredrik Tufvesson,et al.  A geometry-based stochastic MIMO model for vehicle-to-vehicle communications , 2009, IEEE Transactions on Wireless Communications.

[96]  Reiner S. Thomä,et al.  Clustering of MIMO Channel Parameters - Performance Comparison , 2009, VTC Spring 2009 - IEEE 69th Vehicular Technology Conference.

[97]  Visa Koivunen,et al.  Detection and Tracking of MIMO Propagation Path Parameters Using State-Space Approach , 2009, IEEE Transactions on Signal Processing.

[98]  Jun-ichi Takada,et al.  Mobile Station Spatio-Temporal Multipath Clustering of an Estimated Wideband MIMO Double-Directional Channel of a Small Urban 4.5 GHz Macrocell , 2009, EURASIP J. Wirel. Commun. Netw..

[99]  Jia Li,et al.  Automatic UWB clusters identification , 2009, 2009 IEEE Radio and Wireless Symposium.

[100]  D.G. Tzikas,et al.  The variational approximation for Bayesian inference , 2008, IEEE Signal Processing Magazine.

[101]  S. Fast,et al.  Fidelity at high speed: Wireless InSite® Real Time Module™ , 2008, MILCOM 2008 - 2008 IEEE Military Communications Conference.

[102]  Harald Haas,et al.  Spatial Modulation , 2008, IEEE Transactions on Vehicular Technology.

[103]  Xuefeng Yin,et al.  Tracking of Time-Variant Radio Propagation Paths Using Particle Filtering , 2008, 2008 IEEE International Conference on Communications.

[104]  Weina Wang,et al.  On fuzzy cluster validity indices , 2007, Fuzzy Sets Syst..

[105]  Fredrik Tufvesson,et al.  A Measurement-Based Statistical Model for Industrial Ultra-Wideband Channels , 2007, IEEE Transactions on Wireless Communications.

[106]  Ruiyuan Tian,et al.  Tracking Time-Variant Cluster Parameters in MIMO Channel Measurements , 2007, 2007 Second International Conference on Communications and Networking in China.

[107]  J. Chuang,et al.  Automated Identification of Clusters in UWB Channel Impulse Responses , 2007, 2007 Canadian Conference on Electrical and Computer Engineering.

[108]  Xuefeng Yin,et al.  Cluster Characteristics in a MIMO Indoor Propagation Environment , 2007, IEEE Transactions on Wireless Communications.

[109]  Yang Hao,et al.  Statistical Analysis and Performance Evaluation for On-Body Radio Propagation With Microstrip Patch Antennas , 2007, IEEE Transactions on Antennas and Propagation.

[110]  Christoph F. Mecklenbräuker,et al.  A Novel Automatic Cluster Tracking Algorithm , 2006, 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications.

[111]  Andreas F. Molisch,et al.  The COST 259 Directional Channel Model-Part II: Macrocells , 2006, IEEE Transactions on Wireless Communications.

[112]  Thomas Zwick,et al.  The COST259 Directional Channel Model-Part I: Overview and Methodology , 2006, IEEE Transactions on Wireless Communications.

[113]  Ernst Bonek,et al.  A Framework for Automatic Clustering of Parametric MIMO Channel Data Including Path Powers , 2006, IEEE Vehicular Technology Conference.

[114]  Ernst Bonek,et al.  Improving clustering performance using multipath component distance , 2006 .

[115]  Fredrik Tufvesson,et al.  UWB channel measurements in an industrial environment , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[116]  A.F. Molisch,et al.  MIMO systems with antenna selection , 2004, IEEE Microwave Magazine.

[117]  G. Sommerkorn,et al.  Multidimensional high-resolution channel sounding in mobile radio , 2004, Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510).

[118]  Gernot Kubin,et al.  Cluster analysis of wireless channel impulse responses with hidden Markov models , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[119]  Ujjwal Maulik,et al.  Validity index for crisp and fuzzy clusters , 2004, Pattern Recognit..

[120]  Philip S. Yu,et al.  A Framework for Clustering Evolving Data Streams , 2003, VLDB.

[121]  Ujjwal Maulik,et al.  Performance Evaluation of Some Clustering Algorithms and Validity Indices , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[122]  Moe Z. Win,et al.  Evaluation of an ultra-wide-band propagation channel , 2002 .

[123]  Andreas F. Molisch,et al.  Statistical characterization of urban spatial radio channels , 2002, IEEE J. Sel. Areas Commun..

[124]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[125]  Ernst Bonek,et al.  How to Quantify Multipath Separation , 2002 .

[126]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[127]  Robert W. Heath,et al.  Antenna selection for spatial multiplexing systems with linear receivers , 2001, IEEE Communications Letters.

[128]  Michael A. Jensen,et al.  Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel , 2000, IEEE Journal on Selected Areas in Communications.

[129]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[130]  Klaus I. Pedersen,et al.  Channel parameter estimation in mobile radio environments using the SAGE algorithm , 1999, IEEE J. Sel. Areas Commun..

[131]  Hsin-Piao Lin,et al.  Experimental evaluation of smart antenna system performance for wireless communications , 1998 .

[132]  A. Molisch,et al.  Unified channel model for mobile radio systems with smart antennas , 1998 .

[133]  A. J. Levy,et al.  Theory and measurement of the angle of arrival and time delay of UHF radiowaves using a ring array , 1997 .

[134]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[135]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[136]  R. D. DeGroat,et al.  Exponential parameter estimation In the presence of known components and noise , 1994 .

[137]  G. Wilson,et al.  Electrical downtilt through beam-steering versus mechanical downtilt (base station antennas) , 1992, [1992 Proceedings] Vehicular Technology Society 42nd VTS Conference - Frontiers of Technology.

[138]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[139]  Thomas Kailath,et al.  Estimation of Signal Parameters via Rotational Invariance Techniques - ESPRIT , 1986, MILCOM 1986 - IEEE Military Communications Conference: Communications-Computers: Teamed for the 90's.

[140]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[141]  Jaime G. Carbonell,et al.  Machine learning research , 1981, SGAR.

[142]  George L. Turin,et al.  A statistical model of urban multipath propagation , 1972 .

[143]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[144]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[145]  Juyul Lee,et al.  A Novel Power Spectrum-Based Sequential Tracker for Time-Variant Radio Propagation Channel , 2020, IEEE Access.

[146]  A. Klautau,et al.  5 G MIMO Data for Machine Learning : Application to Beam-Selection using Deep Learning , 2018 .

[147]  Anja Klein,et al.  Dynamic Self-Optimization of the Antenna Tilt for Best Trade-off Between Coverage and Capacity in Mobile Networks , 2016, Wireless Personal Communications.

[148]  Desmond P. Taylor,et al.  A Statistical Model for Indoor Multipath Propagation , 2007 .

[149]  Chia-Chin Chong,et al.  A generic statistical-based UWB channel model for high-rise apartments , 2005, IEEE Transactions on Antennas and Propagation.

[150]  Nicolai Czink,et al.  Automatic Clustering of Nonstationary MIMO Channel Parameter Estimates , 2005 .

[151]  Ernst Bonek,et al.  Automatic Clustering of MIMO Channel Parameters using the Multi-Path Component Distance Measure , 2005 .

[152]  Robert Grover Brown,et al.  Introduction to random signal analysis and Kalman filtering , 1983 .

[153]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[154]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[155]  J. Butler,et al.  Beam-forming matrix simplifies design of electronically scanned antennas , 1961 .

[156]  M. S. Babtlett Smoothing Periodograms from Time-Series with Continuous Spectra , 1948, Nature.