An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression.

Breast cancer is the most diagnosed malignancy and the second leading cause of cancer mortality in females. Previous association studies have identified variants on 2q35 associated with the risk of breast cancer. To identify functional susceptibility loci for breast cancer, we interrogated the 2q35 gene desert for chromatin architecture and functional variation correlated with gene expression. We report a novel intergenic breast cancer risk locus containing an enhancer copy number variation (enCNV; deletion) located approximately 400Kb upstream to IGFBP5, which overlaps an intergenic ERα-bound enhancer that loops to the IGFBP5 promoter. The enCNV is correlated with modified ERα binding and monoallelic-repression of IGFBP5 following oestrogen treatment. We investigated the association of enCNV genotype with breast cancer in 1,182 cases and 1,362 controls, and replicate our findings in an independent set of 62,533 cases and 60,966 controls from 41 case control studies and 11 GWAS. We report a dose-dependent inverse association of 2q35 enCNV genotype (percopy OR = 0.68 95%CI 0.55-0.83, P = 0.0002; replication OR = 0.77 95% CI 0.73-0.82, P = 2.1 × 10-19) and identify 13 additional linked variants (r2 > 0.8) in the 20Kb linkage block containing the enCNV (P = 3.2 × 10-15 - 5.6 × 10-17). These associations were independent of previously reported 2q35 variants, rs13387042/rs4442975 and rs16857609, and were stronger for ER-positive than ER-negative disease. Together, these results suggest that 2q35 breast cancer risk loci may be mediating their effect through IGFBP5.

M. Beckmann | P. Fasching | K. Czene | P. Hall | J. Olson | F. Couch | H. Brenner | J. Chang-Claude | M. García-Closas | J. Benítez | T. Wong | Sofia Khan | G. Giles | J. Hopper | B. Henderson | C. Haiman | T. Dörk | M. Southey | A. Lophatananon | A. Cox | D. Easton | Chen-Yang Shen | A. Broeks | P. Pharoah | D. Lambrechts | J. Peto | C. Amos | N. Orr | H. Brauch | V. Kristensen | J. Long | X. Shu | W. Zheng | P. Guénel | L. Signorello | W. Blot | A. Dunning | S. Sangrajrang | Pei-Ei Wu | G. Chenevix-Trench | S. Bojesen | B. Nordestgaard | H. Nevanlinna | D. Kang | N. Bogdanova | P. Devilee | R. Milne | A. González-Neira | U. Hamann | A. Mannermaa | V. Kosma | M. Shah | M. Cole | K. Muir | A. Lindblom | K. Michailidou | J. Dennis | M. Schmidt | M. Bolla | Qin Wang | A. Meindl | R. Schmutzler | A. Rudolph | T. Truong | F. Marmé | B. Burwinkel | E. Sawyer | I. Tomlinson | I. Andrulis | J. Knight | S. Margolin | M. Hooning | A. Swerdlow | J. Figueroa | M. Dumont | R. Winqvist | K. Pylkäs | P. Radice | P. Peterlongo | C. Seynaeve | A. Jakubowska | J. Lubiński | A. Toland | K. Matsuo | Hidemi Ito | A. Wu | S. Teo | M. Hartman | H. Miao | J. Mckay | J. Simard | H. Darabi | I. Dos-Santos-Silva | H. Wildiers | S. Neuhausen | A. V. D. van den Ouweland | D. Yannoukakos | S. Yao | D. J. Van Den Berg | C. Ambrosone | E. Bandera | A. K. Dieffenbach | C. Hong | D. Klevebring | Ji-Yeob Choi | Yu-Tang Gao | Asaf Wyszynski | Yali Zhang | C. Lytle | K. Lam | I. dos-Santos-Silva | Pei‐Ei Wu | Chang-Claude Jenny | Thérèse Truong | P. Hall | Hatef Darabi | Yu-Tang Gao | T. Wong

[1]  S. Cross,et al.  Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation , 2014, Nature Communications.

[2]  A. Ashworth,et al.  Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C , 2014, Genome research.

[3]  L. Berthiaume,et al.  Wnt acylation: seeing is believing. , 2014, Nature chemical biology.

[4]  A. Dunning,et al.  Beyond GWASs: illuminating the dark road from association to function. , 2013, American journal of human genetics.

[5]  N. Boyd,et al.  Longitudinal Changes in IGF-I and IGFBP-3, and Mammographic Density among Postmenopausal Women , 2013, Cancer Epidemiology, Biomarkers & Prevention.

[6]  Yarden Katz,et al.  Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system , 2013, Cell Research.

[7]  H. Werner,et al.  Insulin-like growth factor binding protein-4 and -5 modulate ligand-dependent estrogen receptor-α activation in breast cancer cells in an IGF-independent manner. , 2013, Cellular signalling.

[8]  C. Ambrosone,et al.  Rethinking sources of representative controls for the conduct of case–control studies in minority populations , 2013, BMC Medical Research Methodology.

[9]  Jaana M. Hartikainen,et al.  Large-scale genotyping identifies 41 new loci associated with breast cancer risk , 2013, Nature Genetics.

[10]  Patrick Neven,et al.  Genome-wide association studies identify four ER negative–specific breast cancer risk loci , 2013, Nature Genetics.

[11]  A. Jemal,et al.  Cancer statistics, 2013 , 2013, CA: a cancer journal for clinicians.

[12]  O. Delaneau,et al.  Supplementary Information for ‘ Improved whole chromosome phasing for disease and population genetic studies ’ , 2012 .

[13]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[14]  J. Marchini,et al.  Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.

[15]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[16]  S. Weroha,et al.  IGFBP Ratio Confers Resistance to IGF Targeting and Correlates with Increased Invasion and Poor Outcome in Breast Tumors , 2012, Clinical Cancer Research.

[17]  S. Yao,et al.  Variants in the vitamin D pathway, serum levels of vitamin D, and estrogen receptor negative breast cancer among African-American women: a case-control study , 2012, Breast Cancer Research.

[18]  Ryan E. Mills,et al.  Natural genetic variation caused by small insertions and deletions in the human genome. , 2011, Genome research.

[19]  David Reich,et al.  Validation of a small set of ancestral informative markers for control of population admixture in African Americans. , 2011, American journal of epidemiology.

[20]  N. D. Clarke,et al.  Integrative model of genomic factors for determining binding site selection by estrogen receptor-α , 2010, Molecular systems biology.

[21]  G. Abecasis,et al.  MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes , 2010, Genetic epidemiology.

[22]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[23]  J. Marchini,et al.  Genotype imputation for genome-wide association studies , 2010, Nature Reviews Genetics.

[24]  Yurii S. Aulchenko,et al.  ProbABEL package for genome-wide association analysis of imputed data , 2010, BMC Bioinformatics.

[25]  H. Valdimarsdottir,et al.  Conducting Molecular Epidemiological Research in the Age of HIPAA: A Multi-Institutional Case-Control Study of Breast Cancer in African-American and European-American Women , 2009, Journal of oncology.

[26]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[27]  E. Liu,et al.  An Oestrogen Receptor α-bound Human Chromatin Interactome , 2009, Nature.

[28]  M. Beckmann,et al.  Risk of estrogen receptor-positive and -negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042. , 2009, Journal of the National Cancer Institute.

[29]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[30]  I. Gram,et al.  Genotypes and haplotypes in the insulin-like growth factors, their receptors and binding proteins in relation to plasma metabolic levels and mammographic density , 2008, BMC Medical Genomics.

[31]  D. Gudbjartsson,et al.  Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor–positive breast cancer , 2007, Nature Genetics.

[32]  Bao Hoang,et al.  Delayed mammary gland involution in mice with mutation of the insulin-like growth factor binding protein 5 gene. , 2007, Endocrinology.

[33]  Romayne A. Thompson,et al.  Age-related lobular involution and risk of breast cancer. , 2006, Journal of the National Cancer Institute.

[34]  A. Miele,et al.  Mapping Chromatin Interactions by Chromosome Conformation Capture , 2006, Current protocols in molecular biology.

[35]  R. Baxter,et al.  Insulin-like Growth Factor-binding Protein-5 Inhibits the Growth of Human Breast Cancer Cells in Vitro and in Vivo* , 2003, Journal of Biological Chemistry.

[36]  D. Flint,et al.  Insulin-like growth factor binding protein 5 and apoptosis in mammary epithelial cells , 2003, Journal of Cell Science.

[37]  J. Beattie,et al.  Insulin-like growth factor binding protein-5 (IGFBP-5) induces premature cell death in the mammary glands of transgenic mice. , 2002, Development.

[38]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[39]  H. Berkel,et al.  Free insulin-like growth factor-I and breast cancer risk. , 2001, International journal of cancer.

[40]  P. Donnelly,et al.  Association mapping in structured populations. , 2000, American journal of human genetics.

[41]  W. Thilly,et al.  Mismatch amplification mutation assay (MAMA): application to the c-H-ras gene. , 1992, PCR methods and applications.

[42]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.