Fatigue behaviors of HP-Mg, Mg-Ca and Mg-Zn-Ca biodegradable metals in air and simulated body fluid.

[1]  Ricardo M. Souto,et al.  Electrochemical characteristics of bioresorbable binary MgCa alloys in Ringer's solution: Revealing the impact of local pH distributions during in-vitro dissolution. , 2016, Materials science & engineering. C, Materials for biological applications.

[2]  Yufeng Zheng,et al.  Unique antitumor property of the Mg-Ca-Sr alloys with addition of Zn , 2016, Scientific Reports.

[3]  Soo Teik Lim,et al.  Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial , 2016, The Lancet.

[4]  Yongqiang Wang,et al.  Texture weakening and ductility variation of Mg–2Zn alloy with CA or RE addition , 2015 .

[5]  Zhaoxuan Wu,et al.  The origins of high hardening and low ductility in magnesium , 2015, Nature.

[6]  Xu Chen,et al.  Biodegradable behaviour and fatigue life of ZEK100 magnesium alloy in simulated physiological environment , 2015 .

[7]  C. Davies,et al.  Corrosion fatigue of a magnesium alloy in modified simulated body fluid , 2015 .

[8]  Shervin Eslami Harandi,et al.  Corrosion fatigue fracture of magnesium alloys in bioimplant applications: A review , 2015 .

[9]  Jörg F. Löffler,et al.  Assessing the degradation performance of ultrahigh-purity magnesium in vitro and in vivo , 2015 .

[10]  Zhigang Xu,et al.  Recent advances on the development of magnesium alloys for biodegradable implants. , 2014, Acta biomaterialia.

[11]  Yufeng Zheng,et al.  In vivo stimulation of bone formation by aluminum and oxygen plasma surface-modified magnesium implants. , 2013, Biomaterials.

[12]  R. Raman,et al.  Cracking of magnesium-based biodegradable implant alloys under the combined action of stress and corrosive body fluid: a review , 2013 .

[13]  C. Stukenborg-Colsman,et al.  Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study , 2013, Biomedical engineering online.

[14]  Raimund Erbel,et al.  Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 month results of the prospective, multicentre, first-in-man BIOSOLVE-I trial , 2013, The Lancet.

[15]  R. Raman,et al.  Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment. , 2012, Acta biomaterialia.

[16]  Andrej Atrens,et al.  Corrosion mechanism applicable to biodegradable magnesium implants , 2011 .

[17]  A. Luo,et al.  Effect of twinning, slip, and inclusions on the fatigue anisotropy of extrusion-textured AZ61 magnesium alloy , 2011 .

[18]  C. Alonso,et al.  Comparative study of fluoride conversion coatings formed on biodegradable powder metallurgy Mg: The effect of chlorides at physiological level , 2011 .

[19]  蒋敏,et al.  TERNARY COMPOUNDS AND RELATIVE PHASE EQUILIBRIA IN THE Mg-RICH SIDE OF THE Mg-Zn-Ca SYSTEM , 2011 .

[20]  Yufeng Zheng,et al.  Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy. , 2011, Acta biomaterialia.

[21]  Qudong Wang,et al.  Enhanced very high cycle fatigue performance of extruded Mg-12Gd-3Y-0.5Zr magnesium alloy , 2011 .

[22]  Y. Zheng,et al.  Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid. , 2010, Acta biomaterialia.

[23]  V. Serebryany,et al.  Fatigue strength of a magnesium MA2-1 alloy after equal-channel angular pressing , 2010 .

[24]  Y. Mutoh,et al.  Corrosion fatigue behavior of extruded magnesium alloy AZ80-T5 in a 5% NaCl environment , 2010 .

[25]  R. Willumeit,et al.  Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. , 2010, Acta biomaterialia.

[26]  S. Li,et al.  The role of twinning-detwinning on fatigue fracture morphology of Mg-3%Al-1%Zn alloy , 2008 .

[27]  Frank Witte,et al.  Degradable biomaterials based on magnesium corrosion , 2008 .

[28]  Y. Mutoh,et al.  Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments , 2008 .

[29]  Frank Witte,et al.  Progress and Challenge for Magnesium Alloys as Biomaterials , 2008 .

[30]  Yufeng Zheng,et al.  The development of binary Mg-Ca alloys for use as biodegradable materials within bone. , 2008, Biomaterials.

[31]  M. Peivandi,et al.  In-body corrosion fatigue failure of a stainless steel orthopaedic implant with a rare collection of different damage mechanisms , 2007 .

[32]  G. K. Triantafyllidis,et al.  Premature fracture of a stainless steel 316L orthopaedic plate implant by alternative episodes of fatigue and cleavage decoherence , 2007 .

[33]  Ping Zhang,et al.  Effect of Long-Term Intake of Y3+ in Drinking Water on Gene Expression in Brains of Rats , 2006 .

[34]  Tadashi Kokubo,et al.  How useful is SBF in predicting in vivo bone bioactivity? , 2006, Biomaterials.

[35]  K. J. Miller,et al.  What is fatigue damage? A view point from the observation of low cycle fatigue process , 2005 .

[36]  K. Kainer,et al.  Fatigue of Magnesium Alloys , 2004 .

[37]  G. Song,et al.  Understanding Magnesium Corrosion—A Framework for Improved Alloy Performance , 2003 .

[38]  C. Azevedo Failure analysis of a commercially pure titanium plate for osteosynthesis , 2003 .

[39]  S. A. El-Rahman Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). , 2003, Pharmacological research.

[40]  D. Pioletti,et al.  Effect of different Ti-6Al-4V surface treatments on osteoblasts behaviour. , 2002, Biomaterials.

[41]  Swee Hin Teoh,et al.  Fatigue of biomaterials: a review , 2000 .

[42]  S. Buchman,et al.  Reasons for Removal of Rigid Internal Fixation Devices in Craniofacial Surgery , 1998, The Journal of craniofacial surgery.

[43]  P. Sullivan,et al.  Cranio‐Orbital Reconstruction: Safety and Image Quality of Metallic Implants on CT and MRI Scanning , 1994, Plastic and reconstructive surgery.

[44]  H. Okamoto Comment on Mg-Zn (magnesium-zinc) , 1994 .

[45]  M. Yaremchuk,et al.  The Effects of Rigid Fixation on Craniofacial Growth of Rhesus Monkeys , 1994, Plastic and reconstructive surgery.

[46]  D. Bartel,et al.  Failure of orthopedic implants: Three case histories , 1991 .

[47]  W. J. Kim,et al.  Development of biodegradable Mg-Ca alloy sheets with enhanced strength and corrosion properties through the refinement and uniform dispersion of the Mg₂Ca phase by high-ratio differential speed rolling. , 2015, Acta biomaterialia.

[48]  Yufeng Zheng,et al.  Enhanced antimicrobial properties, cytocompatibility, and corrosion resistance of plasma-modified biodegradable magnesium alloys. , 2014, Acta biomaterialia.

[49]  Peter Hodgson,et al.  The effects of calcium and yttrium additions on the microstructure, mechanical properties and biocompatibility of biodegradable magnesium alloys , 2011 .

[50]  Brad A James,et al.  Fatigue-life assessment and validation techniques for metallic vascular implants. , 2010, Biomaterials.

[51]  S. Segura-Muñoz,et al.  Aluminum as a risk factor for Alzheimer's disease. , 2008, Revista latino-americana de enfermagem.

[52]  Y. Uematsu,et al.  Corrosion fatigue behavior of extruded AZ80, AZ61, and AM60 magnesium alloys in distilled water , 2008 .

[53]  Jochem Nagels,et al.  Stress shielding and bone resorption in shoulder arthroplasty. , 2003, Journal of shoulder and elbow surgery.