A QR-decomposition of block tridiagonal matrices generated by the block Lanczos process
暂无分享,去创建一个
[1] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[2] Axel Ruhe. Implementation aspects of band Lanczos algorithms for computation of eigenvalues of large sparse sym , 1979 .
[3] Qiang Ye,et al. ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..
[4] R. Freund,et al. A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides , 1997 .
[5] Dianne P. O'Leary,et al. Parallel implementation of the block conjugate gradient algorithm , 1987, Parallel Comput..
[6] Richard B. Lehoucq,et al. The computation of elementary unitary matrices , 1996, TOMS.
[7] J. Fourier,et al. Stanford , 2007, Nineteenth-Century Music Review.
[8] Gene H. Golub,et al. The block Lanczos method for computing eigenvalues , 2007, Milestones in Matrix Computation.
[9] B. Parlett. The Algebraic Eigenvalue Problem (J. H. Wilkinson) , 1966 .
[10] Roland W. Freund,et al. A Lanczos-type method for multiple starting vectors , 2000, Math. Comput..
[11] B. Parlett. Analysis of Algorithms for Reflections in Bisectors , 1971 .
[12] Richard R. Underwood. An iterative block Lanczos method for the solution of large sparse symmetric eigenproblems , 1975 .