The Maximum Intensity of Tropical Cyclones in Axisymmetric Numerical Model Simulations

Abstract An axisymmetric numerical model is used to evaluate the maximum possible intensity of tropical cyclones. As compared with traditionally formulated nonhydrostatic models, this new model has improved mass and energy conservation in saturated conditions. In comparison with the axisymmetric model developed by Rotunno and Emanuel, the new model produces weaker cyclones (by ∼10%, in terms of maximum azimuthal velocity); the difference is attributable to several approximations in the Rotunno–Emanuel model. Then, using a single specification for initial conditions (with a sea surface temperature of 26°C), the authors conduct model sensitivity tests to determine the sensitivity of maximum azimuthal velocity (υmax) to uncertain aspects of the modeling system. For fixed mixing lengths in the turbulence parameterization, a converged value of υmax is achieved for radial grid spacing of order 1 km and vertical grid spacing of order 250 m. The fall velocity of condensate (Vt) changes υmax by up to 60%, and the ...

[1]  Gary M. Lackmann,et al.  Analysis of Idealized Tropical Cyclone Simulations Using the Weather Research and Forecasting Model: Sensitivity to Turbulence Parameterization and Grid Spacing , 2009 .

[2]  Yong Wang,et al.  An Explicit Simulation of Tropical Cyclones with a Triply Nested Movable Mesh Primitive Equation Model: TCM3. Part II: Model Refinements and Sensitivity to Cloud Microphysics Parameterization* , 2002 .

[3]  Masaki Satoh Conservative Scheme for a Compressible Nonhydrostatic Model with Moist Processes , 2003 .

[4]  G. Thompson,et al.  Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes , 2009 .

[5]  Wei Wang,et al.  Prediction of Landfalling Hurricanes with the Advanced Hurricane WRF Model , 2008 .

[6]  R. Rotunno,et al.  An air-sea interaction theory for tropical cyclones [presentation] , 1985 .

[7]  K. Ooyama A Dynamic and Thermodynamic Foundation for Modeling the Moist Atmosphere with Parameterized Microphysics. , 2001 .

[8]  Jun A. Zhang,et al.  Air-sea exchange in hurricanes : Synthesis of observations from the coupled boundary layer air-sea transfer experiment , 2007 .

[9]  Da‐Lin Zhang,et al.  A Multiscale Numerical Study of Hurricane Andrew (1992). Part VI: Small-Scale Inner-Core Structures and Wind Streaks , 2004 .

[10]  George H. Bryan,et al.  On the Computation of Pseudoadiabatic Entropy and Equivalent Potential Temperature , 2008 .

[11]  K. Emanuel The Finite-Amplitude Nature of Tropical Cyclogenesis , 1989 .

[12]  J. Bao,et al.  Is the Mass Sink Due to Precipitation Negligible , 1993 .

[13]  J. Klemp,et al.  The Simulation of Three-Dimensional Convective Storm Dynamics , 1978 .

[14]  Louis J. Wicker,et al.  Time-Splitting Methods for Elastic Models Using Forward Time Schemes , 2002 .

[15]  Jun A. Zhang,et al.  Effects of Roll Vortices on Turbulent Fluxes in the Hurricane Boundary Layer , 2008 .

[16]  Scott A. Braun,et al.  Sensitivity of High-Resolution Simulations of Hurricane Bob (1991) to Planetary Boundary Layer Parameterizations , 2000 .

[17]  K. Emanuel Sensitivity of Tropical Cyclones to Surface Exchange Coefficients and a Revised Steady-State Model incorporating Eye Dynamics , 1995 .

[18]  Yuqing Wang,et al.  The Effect of Internally Generated Inner-Core Asymmetries on Tropical Cyclone Potential Intensity* , 2007 .

[19]  W. Skamarock,et al.  The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations , 1992 .

[20]  Kerry A. Emanuel,et al.  The Maximum Intensity of Hurricanes. , 1988 .

[21]  W. Schubert,et al.  Potential Vorticity Structure of Simulated Hurricanes , 2006 .

[22]  R. Yablonsky,et al.  The Importance of the Precipitation Mass Sink in Tropical Cyclones and Other Heavily Precipitating Systems , 2004 .

[23]  S. Braun,et al.  Effects of Environmentally Induced Asymmetries on Hurricane Intensity: A Numerical Study , 2004 .

[24]  G. Bryan,et al.  A Multimodel Assessment of RKW Theory’s Relevance to Squall-Line Characteristics , 2006 .

[25]  George H. Bryan,et al.  A Benchmark Simulation for Moist Nonhydrostatic Numerical Models , 2002 .

[26]  Michael M. Bell,et al.  Hurricane Isabel (2003): New Insights into the Physics of Intense Storms. Part I. Mean Vortex Structure and Maximum Intensity Estimates , 2006 .

[27]  Jay S. Hobgood,et al.  The Relationship between Sea Surface Temperatures and Maximum Intensities of Tropical Cyclones in the Eastern North Pacific Ocean. , 1997 .

[28]  R. Simpson On The Computation of Equivalent Potential Temperature , 1978 .

[29]  P. Black,et al.  Turbulent Fluxes in the Hurricane Boundary Layer. Part I: Momentum Flux , 2007 .

[30]  G. Holland The Maximum Potential Intensity of Tropical Cyclones , 1997 .

[31]  H. D. Orville,et al.  Bulk Parameterization of the Snow Field in a Cloud Model , 1983 .

[32]  P. Black,et al.  Turbulent Fluxes in the Hurricane Boundary Layer. Part II: Latent Heat Flux , 2007 .

[33]  Robert N. Leejoice Hurricane Inner-Core Structure as Revealed by GPS Dropwindsondes , 2000 .

[34]  Jeffrey D. Kepert,et al.  Observed Boundary Layer Wind Structure and Balance in the Hurricane Core. Part I: Hurricane Georges , 2006 .

[35]  M. Powell,et al.  Reduced drag coefficient for high wind speeds in tropical cyclones , 2003, Nature.

[36]  K. Emanuel,et al.  An Air–Sea Interaction Theory for Tropical Cyclones. Part II: Evolutionary Study Using a Nonhydrostatic Axisymmetric Numerical Model , 1987 .

[37]  J. Wyngaard,et al.  Resolution Requirements for the Simulation of Deep Moist Convection , 2003 .

[38]  Michael M. Bell,et al.  Observed Structure, Evolution, and Potential Intensity of Category 5 Hurricane Isabel (2003) from 12 to 14 September , 2008 .

[39]  Chun‐Chieh Wu,et al.  Environmental Dynamical Control of Tropical Cyclone Intensity—An Observational Study , 2006 .

[40]  Stanley L. Rosenthal,et al.  THE RESPONSE OF A TROPICAL CYCLONE MODEL TO VARIATIONS IN BOUNDARY LAYER PARAMETERS, INITIAL CONDITIONS, LATERAL BOUNDARY CONDITIONS, AND DOMAIN SIZE , 1971 .

[41]  Yuqing Wang,et al.  Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part II: The Role in Tropical Cyclone Structure and Intensity Changes* , 2002 .

[42]  R. Rotunno,et al.  The Influence of Near-Surface, High-Entropy Air in Hurricane Eyes on Maximum Hurricane Intensity , 2009 .

[43]  Da‐Lin Zhang,et al.  The Effects of Dissipative Heating on Hurricane Intensity , 1999 .

[44]  Kerry Emanuel,et al.  An Air-Sea Interaction Theory for Tropical Cyclones. Part I: Steady-State Maintenance , 1986 .

[45]  M. Montgomery,et al.  Is Environmental CAPE Important in the Determination of Maximum Possible Hurricane Intensity , 2005 .

[46]  Mark DeMaria,et al.  Sea Surface Temperature and the Maximum Intensity of Atlantic Tropical Cyclones , 1994 .

[47]  K. Emanuel,et al.  Dissipative heating and hurricane intensity , 1998 .

[48]  B. Stevens,et al.  Efficient computation of vapor and heat diffusion between hydrometeors in a numerical model , 2000 .