An Agricultural Mobile Robot with Vision-Based Perception for Mechanical Weed Control

This paper presents an autonomous agricultural mobile robot for mechanical weed control in outdoor environments. The robot employs two vision systems: one gray-level vision system that is able to recognize the row structure formed by the crops and to guide the robot along the rows and a second, color-based vision system that is able to identify a single crop among weed plants. This vision system controls a weeding-tool that removes the weed within the row of crops. The row-recognition system is based on a novel algorithm and has been tested extensively in outdoor field tests and proven to be able to guide the robot with an accuracy of ±2 cm. It has been shown that color vision is feasible for single plant identification, i.e., discriminating between crops and weeds. The system as a whole has been verified, showing that the subsystems are able to work together effectively. A first trial in a greenhouse showed that the robot is able to manage weed control within a row of crops.