Preparation and Nonlinear Optics of Monodisperse Oligo(1,4‐phenyleneethynylene)s

Oligo(1,4-phenyleneethynylene)s 1a−e, with solubilizing propoxy side chains, were prepared by use of Hagihara−Sonogashira coupling reactions. The synthetic strategy was based on a building block system and on the use of trimethylsilyl and triisopropylsilyl protecting groups that could be cleaved selectively. The extension of the conjugation with an increasing number of repeat units provokes a bathochromic shift of the long wavelength absorption and a superlinear increase of the second hyperpolarizability |γ|. The corresponding third harmonic generation (THG) measurements were performed using polystyrene matrices and variable laser wavelengths. We conclude that the conjugation length is much larger than 5 repeat units.

[1]  U. Scherf Oligo- and Polyarylenes, Oligo- and Polyarylenevinylenes , 1999 .

[2]  R. Giesa,et al.  Soluble poly(1,4-phenyleneethynylene)s† , 1990 .

[3]  J. Segura,et al.  Functionalized oligoarylenes as building blocks for new organic materials , 2000 .

[4]  U. Scherf,et al.  A Chiral Poly(para-phenyleneethynylene) (PPE) Derivative , 1998 .

[5]  Paras N. Prasad,et al.  Study of third-order microscopic optical nonlinearities in sequentially built and systematically derivatized structures , 1989 .

[6]  U. Bunz,et al.  High Molecular Weight Poly(p-phenyleneethynylene)s by Alkyne Metathesis Utilizing “Instant” Catalysts: A Synthetic Study , 1999 .

[7]  U. Bunz,et al.  Alkyne Metathesis with Simple Catalyst Systems: Poly(p-phenyleneethynylene)s , 1998 .

[8]  Klaus Müllen,et al.  Acyclische Diinmetathese (ADIMET), ein effizienter Weg zu hochmolekularen Poly(phenylen)ethinylenen (PPEs) und nichtkonjugierten Polyalkinylenen†‡ , 1997 .

[9]  K. Müllen,et al.  Extended π-systems in conjugated oligomers and polymers - the longer, the better? , 1993 .

[10]  U. Bunz,et al.  Poly(aryleneethynylene)s: Syntheses, Properties, Structures, and Applications. , 2000, Chemical reviews.

[11]  Meijer,et al.  Saturation of the hyperpolarizability of oligothiophenes. , 1990, Physical review letters.

[12]  G. Whitesides,et al.  Self-assembled monolayers and multilayers of conjugated thiols, α,ω-dithiols, and thioacetyl-containing adsorbates. Understanding attachments between potential molecular wires and gold surfaces , 1995 .

[13]  Paras N. Prasad,et al.  A systematic study of polarizability and microscopic third‐order optical nonlinearity in thiophene oligomers , 1988 .

[14]  Rainer E. Martin,et al.  Lineare monodisperse π-konjugierte Oligomere: mehr als nur Modellverbindungen für Polymere , 1999 .

[15]  Andrew C. Grimsdale,et al.  Elektrolumineszierende konjugierte Polymere – Polymere erstrahlen in neuem Licht , 1998 .

[16]  Gerhard Wegner,et al.  Electronic Materials: The Oligomer Approach , 1998 .

[17]  S. Luzzati,et al.  Rigid rod conjugated polymers for nonlinear optics: 1. Characterization and linear optical properties of poly(aryleneethynylene) derivatives , 1994 .

[18]  K. Müllen,et al.  Synthesis and optical properties of some novel arylene‐alkynylene polymers , 1995 .

[19]  J. Tour,et al.  Rapid Solution and Solid Phase Syntheses of Oligo(1,4-phenylene ethynylene)s with Thioester Termini: Molecular Scale Wires with Alligator Clips. Derivation of Iterative Reaction Efficiencies on a Polymer Support , 1997 .

[20]  Thienpont,et al.  Optical response of conjugated polymers. , 1993, Physical review. B, Condensed matter.

[21]  F. Spano,et al.  Second hyperpolarizability of Hückel rings: Analytical results for size and alternation dependencies , 1993 .

[22]  J. Tour Conjugated Macromolecules of Precise Length and Constitution. Organic Synthesis for the Construction of Nanoarchitectures. , 1996, Chemical reviews.

[23]  Wang,et al.  Nonlinear optical response of conjugated polymers: Electron-hole anharmonic-oscillator picture. , 1992, Physical review letters.

[24]  Christoph Weder,et al.  Liquid crystalline, highly luminescent poly(2,5-dialkoxy-p-phenyleneethynylene) , 1997 .

[25]  J. Gähde,et al.  Conjugated Polymers and Related Materials , 1994 .

[26]  W. Heitz,et al.  Palladium-catalyzed synthesis of poly(p-phenyleneethynylene)s , 1994 .

[27]  A. Godt,et al.  Synthesis of Monodisperse Oligo(para‐phenyleneethynylene)s Using Orthogonal Protecting Groups with Different Polarity for Terminal Acetylene Units , 1999 .

[28]  Design and Synthesis of Extended π-Systems: Monomers, Oligomers, Polymers , 1992 .

[29]  K. Müllen,et al.  Synthesis of α, ω-difunctionalized oligo- and poly(p-phenyleneethynylene)s , 1998 .

[30]  José N. Onuchic,et al.  Nonlinear susceptibilities of finite conjugated organic polymers , 1987 .

[31]  R. Grubbs,et al.  Highly Unsaturated Oligomeric Hydrocarbons: α-(Phenylethynyl)-ω-phenylpoly[1,2-phenylene(2,1-ethynediyl)] , 1993 .

[32]  H. Meier,et al.  Untersuchungen zur Photoleitfähigkeit von alkoxysubstituierten Oligo‐ und Poly(1,4‐phenylenethenylen)en , 1994 .

[33]  A. Schlüter,et al.  A Biphenyl Construction Kit for Modular Chemistry , 1997 .

[34]  Christoph Weder,et al.  Efficient Solid-State Photoluminescence in New Poly(2,5-dialkoxy-p-phenyleneethynylene)s , 1996 .

[35]  Dieter Neher,et al.  Third-harmonic generation in polyphenylacetylene: Exact determination of nonlinear optical susceptibilities in ultrathin films , 1989 .

[36]  R. Grée,et al.  A NEW METAL MEDIATED STEREOCONTROLLED SYNTHESIS OF ALLYLIC FLUORIDES , 1999 .

[37]  J. Claridge,et al.  Solid-State Structures of Phenyleneethynylenes: Comparison of Monomers and Polymers , 1999 .

[38]  Jeffrey S. Moore,et al.  Nanoarchitectures. 1. Controlled synthesis of phenylacetylene sequences , 1992 .

[39]  Mathy,et al.  Third-harmonic-generation spectroscopy of poly(p-phenylenevinylene): A comparison with oligomers and scaling laws for conjugated polymers. , 1996, Physical review. B, Condensed matter.

[40]  U. Stalmach,et al.  Effective conjugation length and UV/vis spectra of oligomers , 1997 .

[41]  Y. Tohda,et al.  A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines , 1975 .

[42]  James M. Tour,et al.  Synthese linearer konjugierter Oligomere mit einer iterativen, divergenten/konvergenten Methode zur Verdopplung der Monomereinheiten: ein rascher Zugang zu einem 128 Å langen, potentiell leitenden molekularen Draht , 1994 .

[43]  Herbert Meier,et al.  Die Photochemie stilbenoider Verbindungen und ihre materialwissenschaftlichen Aspekte , 1992 .

[44]  A. Godt,et al.  Synthesis and Characterization of Monodisperse Oligo(phenyleneethynylene)s , 1997 .

[45]  M. Alami,et al.  An Efficient palladium-catalysed reaction of vinyl and aryl halides or triflates with terminal alkynes , 1993 .

[46]  Diederich,et al.  Acetylenic Coupling: A Powerful Tool in Molecular Construction. , 2000, Angewandte Chemie.

[47]  R. Giesa Synthesis and Properties of Conjugated Poly(Aryleneethynylene)S , 1996 .

[48]  K. Kubota,et al.  Preparation and optical properties of soluble π-conjugated poly(aryleneethynylene) type polymers , 1993 .

[49]  J. Brédas,et al.  Theoretical study of thiophene oligomers: Electronic excitations, relaxation energies, and nonlinear optical properties , 1993 .

[50]  Olivier Lavastre,et al.  Sequential catalytic synthesis of rod-like conjugated poly-ynes , 1996 .

[51]  T. Swager,et al.  FLUORESCENCE STUDIES OF POLY(P-PHENYLENEETHYNYLENE)S : THE EFFECT OF ANTHRACENE SUBSTITUTION , 1995 .