Fabrication of ZrB2–ZrC-based composites by reactive melt infiltration at relative low temperature

[1]  Yu Zhou,et al.  Reactive wetting and infiltration of polycrystalline WC by molten Zr2Cu alloy , 2011 .

[2]  M. Adabi,et al.  Effect of infiltration parameters on composition of W–ZrC composites produced by displacive compensation of porosity (DCP) method , 2011 .

[3]  Zhihua Yang,et al.  ZrC–ZrB2 matrix composites with enhanced toughness prepared by reactive hot pressing , 2010 .

[4]  Kenneth H. Sandhage,et al.  Near net-shape/net-dimension ZrC/W-based composites with complex geometries via rapid prototyping and Displacive Compensation of Porosity , 2010 .

[5]  J. Vleugels,et al.  Effect of heating rate on densification, microstructure and strength of spark plasma sintered ZrB2-based ceramics , 2010 .

[6]  Jenn‐Ming Yang,et al.  Microstructural development of a Cf/ZrC composite manufactured by reactive melt infiltration , 2010 .

[7]  C. Hong,et al.  Mechanical properties and thermal shock resistance of ZrB2–SiC ceramic toughened with graphite flake and SiC whiskers , 2009 .

[8]  K. Sandhage,et al.  The kinetics of incongruent reduction of tungsten carbide via reaction with a hafnium-copper melt , 2009 .

[9]  M. Martínez-Escandell,et al.  The combined effect of porosity and reactivity of the carbon preforms on the properties of SiC produced by reactive infiltration with liquid Si , 2009 .

[10]  S. Guo,et al.  Densification of ZrB2-based composites and their mechanical and physical properties: A review , 2009 .

[11]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[12]  J. Günster,et al.  Development of a high temperature Cf/XSi2–SiC (X = Mo, Ti) composite via reactive melt infiltration , 2007 .

[13]  H. Sieber,et al.  Reactive Melt Infiltration Processing of Biomorphic Si–Mo–C Ceramics from Wood , 2005 .

[14]  K. Sandhage,et al.  Dense, Near Net-Shaped, Carbide/Refractory Metal Composites at Modest Temperatures by the Displacive Compensation of Porosity (DCP) Method , 2004 .

[15]  K. Sandhage,et al.  Near net-shape, ultra-high melting, recession-resistant ZrC/W-based rocket nozzle liners via the displacive compensation of porosity (DCP) method , 2004 .

[16]  K. Sandhage,et al.  Incongruent reduction of tungsten carbide by a zirconium-copper melt , 2003 .

[17]  J. Heinrich,et al.  Processing–microstructure–properties relationships of MoSi2–SiC composites , 2002 .

[18]  Alida Bellosi,et al.  Processing and properties of zirconium diboride-based composites , 2002 .

[19]  M. W. Chase,et al.  NIST-JANAF Thermochemical Tables Fourth Edition , 1998 .

[20]  K. Upadhya,et al.  Materials for ultrahigh temperature structural applications , 1997 .

[21]  H. Lukas,et al.  A new thermodynamic description of the Cu-Zr system , 1994 .

[22]  S. Woo,et al.  Fabrication and microstructural evaluation of ZrB2/ZrC/Zr composites by liquid infiltration , 1994 .

[23]  W. B. Johnson,et al.  Microstructure of Platelet-Reinforced Ceramics Prepared by the Directed Reaction of Zirconium with Boron Carbide , 1992 .

[24]  W. B. Johnson,et al.  Kinetics of Formation of a Platelet-Reinforced Ceramic Composite Prepared by the Directed Reaction of Zirconium with Boron Carbide , 1991 .

[25]  Y. Chiang,et al.  Liquid‐Phase Reaction‐Bonding of Silicon Carbide Using Alloyed Silicon‐Molybdenum Melts , 1990 .

[26]  T. Page,et al.  Microstructural evolution in reaction-bonded silicon carbide , 1986 .