Three Super-Earths Transiting the Nearby Star GJ 9827

We report on the discovery of three transiting planets around GJ 9827. The planets have radii of 1.75 ± 0.18, 1.36 ± 0.14, and R⊕, and periods of 1.20896, 3.6480, and 6.2014 days, respectively. The detection was made in Campaign 12 observations as part of our K2 survey of nearby stars. GJ 9827 is a V = 10.39 mag K6V star at a distance of 30.3 ± 1.6 parsecs and the nearest star to be found hosting planets by Kepler and K2. The radial velocity follow-up, high-resolution imaging, and detection of multiple transiting objects near commensurability drastically reduce the false positive probability. The orbital periods of GJ 9827 b, c, and d planets are very close to the 1:3:5 mean motion resonance. Our preliminary analysis shows that GJ 9827 planets are excellent candidates for atmospheric observations. Besides, the planetary radii span both sides of the rocky and gaseous divide, hence the system will be an asset in expanding our understanding of the threshold.

[1]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[2]  Joseph E. Rodriguez,et al.  A System of Three Super Earths Transiting the Late K-Dwarf GJ 9827 at 30 pc , 2017, 1709.01957.

[3]  Marshall C. Johnson,et al.  The Transiting Multi-planet System HD 3167: A 5.7 M⊕ Super-Earth and an 8.3 M⊕ Mini-Neptune , 2017, 1706.02532.

[4]  R. P. Butler,et al.  K2-106, a system containing a metal-rich planet and a planet of lower density , 2017, 1705.04163.

[5]  A. Johansen,et al.  K2-111 b − a short period super-Earth transiting a metal poor, evolved old star , 2017, 1704.08284.

[6]  S. Redfield,et al.  Evidence for Abnormal Hα Variability During Near-transit Observations of HD 189733 b , 2017, 1703.02562.

[7]  S. Csizmadia,et al.  EPIC 218916923 b: a low-mass warm Jupiter on a 29-day orbit transiting an active K0 V star , 2017 .

[8]  E. Petigura,et al.  Precision Stellar Characterization of FGKM Stars using an Empirical Spectral Library , 2017, 1701.00922.

[9]  D. Lai,et al.  Migration of Planets Into and Out of Mean Motion Resonances in Protoplanetary Disks: Analytical Theory of Second-Order Resonances , 2016, 1611.06463.

[10]  J. Drake,et al.  Simulating the environment around planet-hosting stars - II. Stellar winds and inner astrospheres , 2016, 1607.08405.

[11]  Michael C. Liu,et al.  197 CANDIDATES AND 104 VALIDATED PLANETS IN K2's FIRST FIVE FIELDS , 2016, 1607.05263.

[12]  P. Bodenheimer,et al.  IN SITU AND EX SITU FORMATION MODELS OF KEPLER 11 PLANETS , 2016, 1606.08088.

[13]  R. P. Butler,et al.  THE K2-ESPRINT PROJECT. V. A SHORT-PERIOD GIANT PLANET ORBITING A SUBGIANT STAR , 2016, 1605.09180.

[14]  P. Magain,et al.  Temperate Earth-sized planets transiting a nearby ultracool dwarf star , 2016, Nature.

[15]  D. Mullan,et al.  ROTATION–ACTIVITY CORRELATIONS IN K AND M DWARFS. I. STELLAR PARAMETERS AND COMPILATIONS OF v sin i AND P/sin i FOR A LARGE SAMPLE OF LATE-K AND M DWARFS , 2016, 1604.07920.

[16]  Davide Gandolfi,et al.  TWO HOT JUPITERS FROM K2 CAMPAIGN 4 , 2016, 1601.07844.

[17]  Howard Isaacson,et al.  ELEVEN MULTIPLANET SYSTEMS FROM K2 CAMPAIGNS 1 AND 2 AND THE MASSES OF TWO HOT SUPER-EARTHS , 2015, 1511.09213.

[18]  P. Berlind,et al.  PLANETARY CANDIDATES FROM THE FIRST YEAR OF THE K2 MISSION , 2015, 1511.07820.

[19]  Jason T. Wright,et al.  A disintegrating minor planet transiting a white dwarf , 2015, Nature.

[20]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[21]  S. Albrecht,et al.  ECCENTRICITY FROM TRANSIT PHOTOMETRY: SMALL PLANETS IN KEPLER MULTI-PLANET SYSTEMS HAVE LOW ECCENTRICITIES , 2015, 1505.02814.

[22]  David J Armstrong,et al.  One of the closest exoplanet pairs to the 3:2 mean motion resonance: K2-19b and c , 2015, Astronomy & Astrophysics.

[23]  C. F. Lillie,et al.  Characterizing Transiting Planet Atmospheres through 2025 , 2015, 1502.00004.

[24]  B. J. Fulton,et al.  A NEARBY M STAR WITH THREE TRANSITING SUPER-EARTHS DISCOVERED BY K2 , 2015, 1501.03798.

[25]  K. Braun,et al.  HOW TO CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, AND RADIUS , 2015, 1501.01635.

[26]  S. Aigrain,et al.  HST hot-Jupiter transmission spectral survey: detection of potassium in WASP-31b along with a cloud deck and Rayleigh scattering , 2014, 1410.7611.

[27]  Jason H. Steffen,et al.  The period ratio distribution of Kepler's candidate multiplanet systems , 2014, 1409.3320.

[28]  A. Szentgyorgyi,et al.  THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS , 2014, 1412.8687.

[29]  Gautam Vasisht,et al.  Observations of Transiting Exoplanets with the James Webb Space Telescope (JWST) , 2014, 1411.1754.

[30]  H. Schlichting FORMATION OF CLOSE IN SUPER-EARTHS AND MINI-NEPTUNES: REQUIRED DISK MASSES AND THEIR IMPLICATIONS , 2014, 1410.1060.

[31]  A. Vanderburg,et al.  A Technique for Extracting Highly Precise Photometry for the Two-Wheeled Kepler Mission , 2014, 1408.3853.

[32]  L. Rogers MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY , 2014, 1407.4457.

[33]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[34]  E. Agol,et al.  VALIDATION OF KEPLER'S MULTIPLE PLANET CANDIDATES. III. LIGHT CURVE ANALYSIS AND ANNOUNCEMENT OF HUNDREDS OF NEW MULTI-PLANET SYSTEMS , 2014, 1402.6534.

[35]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[36]  G. Marcy,et al.  THE MASS–RADIUS RELATION FOR 65 EXOPLANETS SMALLER THAN 4 EARTH RADII , 2013, 1312.0936.

[37]  J. Fortney,et al.  UNDERSTANDING THE MASS–RADIUS RELATION FOR SUB-NEPTUNES: RADIUS AS A PROXY FOR COMPOSITION , 2013, 1311.0329.

[38]  John C. Geary,et al.  ARCHITECTURE OF KEPLER'S MULTI-TRANSITING SYSTEMS. II. NEW INVESTIGATIONS WITH TWICE AS MANY CANDIDATES , 2012, The Astrophysical Journal.

[39]  H. C. Stempels,et al.  FIES: The high-resolution Fiber-fed Echelle Spectrograph at the Nordic Optical Telescope , 2014 .

[40]  Kevin France,et al.  THE INTRINSIC EXTREME ULTRAVIOLET FLUXES OF F5 V TO M5 V STARS , 2013, 1310.1360.

[41]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[42]  A. A. Djupvik,et al.  Kepler-77b: a very low albedo, Saturn-mass transiting planet around a metal-rich solar-like star , 2013, 1305.3891.

[43]  T. Mazeh,et al.  Measuring the rotation period distribution of field M dwarfs with Kepler , 2013, 1303.6787.

[44]  Antonio Pérez-Garrido,et al.  New companions to nearby low-mass stars , 2013 .

[45]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[46]  G. Laughlin,et al.  The minimum-mass extrasolar nebula: in situ formation of close-in super-Earths , 2012, 1211.1673.

[47]  Las Cumbres Observatory Global Telescope Network,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA , 2012, 1202.5852.

[48]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[49]  John C. Geary,et al.  Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities , 2012, Science.

[50]  K. Kinemuchi,et al.  ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS , 2012, 1201.5424.

[51]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[52]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[53]  Jon M. Jenkins,et al.  ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS , 2011, 1102.0543.

[54]  M. Wyatt,et al.  A general model of resonance capture in planetary systems: first- and second-order resonances , 2010, 1012.3079.

[55]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[56]  M. Holman,et al.  The Value of Systems with Multiple Transiting Planets , 2010, 1006.3727.

[57]  G. Furesz,et al.  HAT-P-16b: A 4 MJ PLANET TRANSITING A BRIGHT STAR ON AN ECCENTRIC ORBIT, , 2010, 1005.2009.

[58]  David K. Sing,et al.  Stellar limb-darkening coefficients for CoRot and Kepler , 2009, 0912.2274.

[59]  Mark Clampin,et al.  Discovery and Characterization of Transiting SuperEarths Using an All-Sky Transit Survey and Follow-Up by the James Webb Space Telescope , 2010 .

[60]  G. Laughlin,et al.  Discovery and Characterization of Transiting Super Earths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope , 2009, 0903.4880.

[61]  D. Sasselov,et al.  THE ATMOSPHERIC SIGNATURES OF SUPER-EARTHS: HOW TO DISTINGUISH BETWEEN HYDROGEN-RICH AND HYDROGEN-POOR ATMOSPHERES , 2008, 0808.1902.

[62]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[63]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[64]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[65]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[66]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[67]  J. Linsky,et al.  New Mass-Loss Measurements from Astrospheric Lyα Absorption , 2005, astro-ph/0506401.

[68]  G. Kov'acs,et al.  A box-fitting algorithm in the search for periodic transits , 2002, astro-ph/0206099.

[69]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[70]  Imke de Pater,et al.  A low-temperature origin for the planetesimals that formed Jupiter , 1999, Nature.

[71]  Doug Tody,et al.  The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.

[72]  C. B. Stephenson Dwarf K and M stars of high proper motion found in a hemispheric survey , 1986 .