Utility function of fuzzy preferences on a countable set under max-*-transitivity

We determine, by means of max-*-transitivity, necessary and sufficient conditions for a fuzzy binary relation R defined on a countable (finite or denumerable) set A to be representable by a utility function. We display one example of its application.

[1]  Henri Gwét,et al.  Normalized Conditional Possibility Distributions and Informational Connection Between Fuzzy Variables , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[2]  R. Deb,et al.  Transitivity and fuzzy preferences , 1996 .

[3]  Antoine Billot,et al.  Economic Theory of Fuzzy Equilibria , 1992 .

[4]  Henri Gwet,et al.  Fuzzy utility and non cardinal : Representation of preferences , 2000 .

[5]  C. R. Barrett,et al.  On choosing rationally when preferences are fuzzy , 1990 .

[6]  Louis Aimé Fono,et al.  On strict lower and upper sections of fuzzy orderings , 2003, Fuzzy Sets Syst..

[7]  Nicolas Gabriel Andjiga,et al.  Fuzzy strict preference and social choice , 2005, Fuzzy Sets Syst..

[8]  Antoine Billot Economic Theory of Fuzzy Equilibria: An Axiomatic Analysis , 1992 .

[9]  Hal R. Varian,et al.  Introduction à la microéconomie , 1994 .

[10]  A. Sen,et al.  Social Choice Theory , 1980 .

[11]  G. Debreu,et al.  Theory of Value , 1959 .

[12]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[13]  C. Ponsard,et al.  Fuzzy mathematical models in economics , 1988 .

[14]  Kunal Sengupta Choice rules with fuzzy preferences: Some characterizations , 1999 .

[15]  Sergei Ovchinnikov,et al.  Numerical representation of transitive fuzzy relations , 2002, Fuzzy Sets Syst..

[16]  Neelam Jain Transitivity of fuzzy relations and rational choice , 1990 .

[17]  Antoine Billot,et al.  An existence theorem for fuzzy utility functions: A new elementary proof , 1995, Fuzzy Sets Syst..

[18]  Peter C. Fishburn,et al.  Utility theory for decision making , 1970 .