On directed-convex polyominoes in a rectangle
暂无分享,去创建一个
[1] Brendan D. McKay,et al. Isomorph-Free Exhaustive Generation , 1998, J. Algorithms.
[2] K. Lin,et al. Rigorous results for the number of convex polygons on the square and honeycomb lattices , 1988 .
[3] David Avis,et al. Reverse Search for Enumeration , 1996, Discret. Appl. Math..
[4] R. Stanley,et al. Enumerative Combinatorics: Index , 1999 .
[5] S. Rinaldi,et al. How the odd terms in the Fibonacci sequence stack up , 2006, The Mathematical Gazette.
[6] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[7] Emeric Deutsch,et al. Enumerating symmetric directed convex polyominoes , 2004, Discret. Math..
[8] Renzo Pinzani,et al. Approximating algebraic functions by means of rational ones , 2002, Theor. Comput. Sci..
[9] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[10] Fan Chung Graham,et al. The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.
[11] H. Temperley. Combinatorial Problems Suggested by the Statistical Mechanics of Domains and of Rubber-Like Molecules , 1956 .
[12] Alberto Del Lungo,et al. ECO:a methodology for the enumeration of combinatorial objects , 1999 .
[13] D. Hugh Redelmeier,et al. Counting polyominoes: Yet another attack , 1981, Discret. Math..
[14] D. G. Rogers,et al. THE CATALAN NUMBERS, THE LEBESGUE INTEGRAL, AND 4N-2 , 1997 .
[15] J. Hammersley. Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.
[16] S. W. Golomb,et al. Checker Boards and Polyominoes , 1954 .
[17] Louis W. Shapiro,et al. The Riordan group , 1991, Discret. Appl. Math..
[18] Andrea Frosini,et al. On the Generation and Enumeration of some Classes of Convex Polyominoes , 2004, Electron. J. Comb..
[19] H. Temperley. Statistical mechanics and the partition of numbers II. The form of crystal surfaces , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.