On directed-convex polyominoes in a rectangle

We provide bijective proofs for the number of directed-convex polyominoes having a fixed number of rows and columns in two ways: by means of the ECO method, and through a correspondence with the set of 2-colored Grand-Motzkin paths. Resume: Dans cet article, nous donnons des preuves bijectives pour le nombre de polyominos diriges convexes ayant un nombre fixe de lignes et de colonnes, en utilisant la methodologie ECO ainsi qu'une application bijective dans l'ensemble des grands chemins de Motzkin bi-colores.

[1]  Brendan D. McKay,et al.  Isomorph-Free Exhaustive Generation , 1998, J. Algorithms.

[2]  K. Lin,et al.  Rigorous results for the number of convex polygons on the square and honeycomb lattices , 1988 .

[3]  David Avis,et al.  Reverse Search for Enumeration , 1996, Discret. Appl. Math..

[4]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[5]  S. Rinaldi,et al.  How the odd terms in the Fibonacci sequence stack up , 2006, The Mathematical Gazette.

[6]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[7]  Emeric Deutsch,et al.  Enumerating symmetric directed convex polyominoes , 2004, Discret. Math..

[8]  Renzo Pinzani,et al.  Approximating algebraic functions by means of rational ones , 2002, Theor. Comput. Sci..

[9]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[10]  Fan Chung Graham,et al.  The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.

[11]  H. Temperley Combinatorial Problems Suggested by the Statistical Mechanics of Domains and of Rubber-Like Molecules , 1956 .

[12]  Alberto Del Lungo,et al.  ECO:a methodology for the enumeration of combinatorial objects , 1999 .

[13]  D. Hugh Redelmeier,et al.  Counting polyominoes: Yet another attack , 1981, Discret. Math..

[14]  D. G. Rogers,et al.  THE CATALAN NUMBERS, THE LEBESGUE INTEGRAL, AND 4N-2 , 1997 .

[15]  J. Hammersley Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  S. W. Golomb,et al.  Checker Boards and Polyominoes , 1954 .

[17]  Louis W. Shapiro,et al.  The Riordan group , 1991, Discret. Appl. Math..

[18]  Andrea Frosini,et al.  On the Generation and Enumeration of some Classes of Convex Polyominoes , 2004, Electron. J. Comb..

[19]  H. Temperley Statistical mechanics and the partition of numbers II. The form of crystal surfaces , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.