Enhancing calibration models for non-invasive near-infrared spectroscopical blood glucose determination

Abstract Partial least-squares regression (PLS) and radial basis function (RBF) networks are used to compute calibration models for non-invasive blood glucose determination by NIR diffuse reflectance spectroscopy. A model computation shows that even extremely small deviations of the spectra induce increased prediction errors. Since the spectral contribution of blood glucose is much smaller than deviations resulting from the non-invasive measuring process a method based on Pearson’s correlation coefficient can be used for evaluating the quality of the recorded spectra during the prediction step. Another method is based on the leverage values from the hat matrix of the RBF network. Both methods lead to a significant decrease in prediction error.