FPRAS for computing a lower bound for weighted matching polynomial of graphs

We give a fully polynomial randomized approximation scheme to compute a lower bound for the matching polynomial of any weighted graph at a positive argument. For the matching polynomial of complete bipartite graphs with bounded weights these lower bounds are asymptotically optimal.

[1]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[2]  Shmuel Friedland A proof of a generalized van der Waerden conjecture on permanents , 1982 .

[3]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries , 2001, STOC '01.

[4]  M. Ledoux The concentration of measure phenomenon , 2001 .

[5]  M. Talagrand A new look at independence , 1996 .

[6]  L. Gurvits,et al.  Generalized Friedland-Tverberg inequality: applications and extensions , 2006, math/0603410.

[7]  Richard M. Karp,et al.  Monte-Carlo algorithms for the planar multiterminal network reliability problem , 1985, J. Complex..

[8]  Shmuel Friedland,et al.  A polynomial-time approximation algorithm for the number of k-matchings in bipartite graphs , 2006, ArXiv.

[9]  R. Baxter,et al.  Dimers on a Rectangular Lattice , 1968 .

[10]  Shmuel Friedland,et al.  Theory of computation of multidimensional entropy with an application to the monomer-dimer problem , 2004, Adv. Appl. Math..

[11]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[12]  Shmuel Friedland,et al.  Concentration of permanent estimators for certain large matrices , 2004 .

[13]  Alexander I. Barvinok,et al.  Polynomial Time Algorithms to Approximate Permanents and Mixed Discriminants Within a Simply Exponential Factor , 1999, Random Struct. Algorithms.

[14]  O. J. Heilmann,et al.  Theory of monomer-dimer systems , 1972 .

[15]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[16]  Lin Yu-qing,et al.  Matching polynomial of graph , 2007 .

[17]  A. Guionnet,et al.  CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES , 2000 .