Heterojunction p-n-p Cu2O/S-TiO2/CuO: Synthesis and application to photocatalytic conversion of CO2 to methane

[1]  D. Kozlov,et al.  UV-LED photocatalytic oxidation of carbon monoxide over TiO2 supported with noble metal nanoparticles , 2017 .

[2]  C. Grimes,et al.  Hybrid CuxO–TiO2 Heterostructured Composites for Photocatalytic CO2 Reduction into Methane Using Solar Irradiation: Sunlight into Fuel , 2016, ACS omega.

[3]  V. A. L. P. O'Shea,et al.  Hierarchical TiO2 nanofibres as photocatalyst for CO2 reduction: Influence of morphology and phase composition on catalytic activity , 2016 .

[4]  C. Grimes,et al.  Hybrid mesoporous Cu2ZnSnS4 (CZTS)–TiO2 photocatalyst for efficient photocatalytic conversion of CO2 into CH4 under solar irradiation , 2016 .

[5]  C. Grimes,et al.  Facile fabrication of a noble metal-free photocatalyst: TiO2 nanotube arrays covered with reduced graphene oxide , 2016 .

[6]  Wenyao Li,et al.  CuS hierarchical hollow microcubes with improved visible-light photocatalytic performance , 2015 .

[7]  Kui Zhang,et al.  A study on CO2 and CH4 conversion to synthesis gas and higher hydrocarbons by the combination of catalysts and dielectric-barrier discharges , 2015 .

[8]  C. Grimes,et al.  Photocatalytic conversion of CO2 to hydrocarbon fuel using carbon and nitrogen co-doped sodium titanate nanotubes , 2015 .

[9]  X. Wen,et al.  Introducing a protective interlayer of TiO2 in Cu2O–CuO heterojunction thin film as a highly stable visible light photocathode , 2015 .

[10]  Hanqing Yu,et al.  Cathodic catalysts in bioelectrochemical systems for energy recovery from wastewater. , 2014, Chemical Society reviews.

[11]  Young Kwang Kim,et al.  Synthesis and characterization of platinum modified TiO2-embedded carbon nanofibers for solar hydrogen generation , 2014 .

[12]  W. Wenbo,et al.  Copper oxide nanowire arrays synthesized by in-situ thermal oxidation as an anode material for lithium-ion batteries , 2014 .

[13]  Ang Li,et al.  CuO nanowire growth on Cu2O by in situ thermal oxidation in air , 2013 .

[14]  N. Barakat,et al.  Electrospun Cu-doped titania nanofibers for photocatalytic hydrolysis of ammonia borane , 2013 .

[15]  R. Amal,et al.  Embedment of anodized p-type Cu₂O thin films with CuO nanowires for improvement in photoelectrochemical stability. , 2013, Nanoscale.

[16]  Quan Li,et al.  Highly aligned Cu2O/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis , 2013 .

[17]  K. Rajeshwar,et al.  Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO-Cu2O semiconductor nanorod arrays. , 2013, Chemical communications.

[18]  Y. Izumi,et al.  Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond , 2013 .

[19]  Photocatalytic CO2 reduction by TiO2 and related titanium containing solids , 2012 .

[20]  Chia-Ming Wu,et al.  Enhanced photocatalytic water splitting activity of carbon-modified TiO2 composite materials synthesized by a green synthetic approach , 2012 .

[21]  Dimitri D. Vaughn,et al.  Hybrid CuO-TiO(2-x)N(x) hollow nanocubes for photocatalytic conversion of CO2 into methane under solar irradiation. , 2012, Angewandte Chemie.

[22]  Dong Liu,et al.  Photoreduction of CO2 using copper-decorated TiO2 nanorod films with localized surface plasmon behavior , 2012 .

[23]  C. Sorrell,et al.  Single and mixed phase TiO2 powders prepared by excess hydrolysis of titanium alkoxide , 2012, 1410.8255.

[24]  Qiang Zhang,et al.  CuO nanowires prepared via a facile solution route and their photocatalytic property , 2012 .

[25]  Hiromi Yamashita,et al.  Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts , 2012 .

[26]  Zhang Jinfeng,et al.  Preparation, Characterization, and Activity Evaluation of CuO/F-TiO2 Photocatalyst , 2012 .

[27]  C. Grimes,et al.  Generation of fuel from CO2 saturated liquids using a p-Si nanowire ‖ n-TiO2 nanotube array photoelectrochemical cell. , 2012, Nanoscale.

[28]  Min Liu,et al.  Hybrid Cu(x)O/TiO₂ nanocomposites as risk-reduction materials in indoor environments. , 2012, ACS nano.

[29]  S. G. Kumar,et al.  Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. , 2011, The journal of physical chemistry. A.

[30]  Dionysios D. Dionysiou,et al.  Innovative visible light-activated sulfur doped TiO2 films for water treatment , 2011 .

[31]  Feng Xin,et al.  Photocatalytic reduction of CO2 in methanol to methyl formate over CuO-TiO2 composite catalysts. , 2011, Journal of colloid and interface science.

[32]  M. Subrahmanyam,et al.  Highly Stabilized and Finely Dispersed Cu2O/TiO2: A Promising Visible Sensitive Photocatalyst for Continuous Production of Hydrogen from Glycerol:Water Mixtures , 2010 .

[33]  A. Jia,et al.  Study of Catalytic Activity at the CuO−CeO2 Interface for CO Oxidation , 2010 .

[34]  Din Ping Tsai,et al.  CO2 photoreduction using NiO/InTaO4 in optical-fiber reactor for renewable energy , 2010 .

[35]  Somnath C. Roy,et al.  Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. , 2010, ACS nano.

[36]  J. Ryu,et al.  Reaction morphology and the effect of pH on the preparation of TiO2 nanoparticles by a sol-gel method , 2010 .

[37]  T. Moore,et al.  Solar fuels via artificial photosynthesis. , 2009, Accounts of chemical research.

[38]  H. Schobert,et al.  Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook , 2009 .

[39]  Craig A. Grimes,et al.  High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. , 2009, Nano letters.

[40]  S. Pillai,et al.  Improved High-Temperature Stability and Sun-Light-Driven Photocatalytic Activity of Sulfur-Doped Anatase TiO2 , 2008 .

[41]  R. M. Lambert,et al.  Effective visible light-activated B-doped and B,N-codoped TiO2 photocatalysts. , 2007, Journal of the American Chemical Society.

[42]  Y. Nosaka,et al.  Photoelectrochemical Properties of the Sulfur-doped TiO2 Film Electrodes: Characterization of the Doped States by Means of the Photocurrent Measurements , 2007 .

[43]  R. M. Lambert,et al.  Efficient visible light-active N-doped TiO2 photocatalysts by a reproducible and controllable synthetic route. , 2006, Chemical communications.

[44]  Sara Mahshid,et al.  Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution , 2006 .

[45]  Jiaguo Yu,et al.  Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. , 2005, Environmental science & technology.

[46]  K. Asai,et al.  Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light , 2004 .

[47]  Keisuke Asai,et al.  Band gap narrowing of titanium dioxide by sulfur doping , 2002 .

[48]  Yuichi Ichihashi,et al.  Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts , 1995 .

[49]  J. Langford,et al.  High-resolution powder diffraction studies of copper(II) oxide , 1991 .

[50]  A. Fujishima,et al.  Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders , 1979, Nature.