Dynamic model and experimental validation for the control of emersion manoeuvers of devices for marine currents harnessing

Finding solutions for fully automated performing emersion and immersion manoeuvers of submerged hydrokinetic devices with which to harness renewable energies requires the study of simple and reliable dynamic models. This paper presents a simple dynamic model for an approximately cylindrical body when it performs open loop emersion motions. It includes free surface motion with a single degree of freedom.

[1]  Marc J. Richard,et al.  Dynamic Analysis of a Manipulator in a Fluid Environment , 1994, Int. J. Robotics Res..

[2]  J. Hardisty The Analysis of Tidal Stream Power , 2009 .

[3]  Stephan T. Grilli,et al.  PII: S0955-7997(99)00021-1 , 1999 .

[4]  Frederick H Imlay THE COMPLETE EXPRESSIONS FOR ADDED MASS OF A RIGID BODY MOVING IN AN IDEAL FLUID , 1961 .

[5]  Joseph Andrew Clarke,et al.  A techno-economic analysis of tidal energy technology , 2013 .

[6]  João C.C. Henriques,et al.  Dynamics and optimization of the OWC spar buoy wave energy converter , 2012 .

[7]  Jeffrey A. Delmerico,et al.  Variable buoyancy control for a bottom skimming autonomous underwater vehicle , 2014, 2014 Oceans - St. John's.

[8]  Rafael Morales,et al.  Dynamic control of a reconfigurable stair-climbing mobility system , 2013, Robotica.

[9]  M. Shafiee Maintenance logistics organization for offshore wind energy: Current progress and future perspectives , 2015 .

[10]  Morton Nadler,et al.  The stability of motion , 1961 .

[11]  Vicente Feliú Batlle,et al.  Inverse dynamics based control system for a three-degree-of-freedom flexible arm , 2003, IEEE Trans. Robotics Autom..

[12]  Vicente Feliú Batlle,et al.  Modeling and control of a new three-degree-of-freedom flexible arm with simplified dynamics , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[13]  A. Borisov,et al.  Asymptotic stability and associated problems of dynamics of falling rigid body , 2007 .

[14]  A. Borisov,et al.  On the motion of a heavy rigid body in an ideal fluid with circulation. , 2005, Chaos.

[15]  J. R. Morison,et al.  The Force Exerted by Surface Waves on Piles , 1950 .

[16]  James Franklin Wilson,et al.  Dynamics of Offshore Structures , 1984 .

[17]  J.A. Somolinos,et al.  Stability analysis of a new control scheme for a three-degree-of-freedom flexible arm under tip payload changes , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[18]  Kiyoshi Ioi,et al.  Modelling and simulation of an underwater manipulator , 1989, Adv. Robotics.

[19]  Jose Andrés Somolinos,et al.  Dynamic model of a stair-climbing mobility system and its experimental validation , 2012 .

[20]  Lars Johanning,et al.  Mooring line fatigue damage evaluation for floating marine energy converters: Field measurements and prediction , 2014 .

[21]  J. Falnes,et al.  STATE-SPACE MODELLING OF A VERTICAL CYLINDER IN HEAVE , 1995 .

[22]  Jose Andrés Somolinos,et al.  Modelado Energético de Convertidores Primarios para el Aprovechamiento de las Energías Renovables Marinas , 2014 .

[23]  Avesta Goodarzi,et al.  Stability analysis of a CALM floating offshore structure , 2001 .

[24]  Thor I. Fossen,et al.  Handbook of Marine Craft Hydrodynamics and Motion Control , 2011 .

[25]  Vicente Feliu,et al.  Design, dynamic modelling and experimental validation of a new three-degree-of-freedom flexible arm , 2002 .

[26]  Jose Andrés Somolinos,et al.  Methodology and results of the sea trials for a second generation tidal converter , 2014 .

[27]  J. King,et al.  Tidal stream power technology - state of the art , 2009, OCEANS 2009-EUROPE.

[28]  R. Kelly,et al.  STRICT LYAPUNOV FUNCTION AND CHETAEV FUNCTION FOR STABILITY/INSTABILITY ANALYSIS OF THE PENDULUM , 2005 .

[29]  J. A. Somolinos,et al.  Simulation of the emersion procedure for a new underwater generator , 2009 .