Designing Photonic Materials for Effective Bandgap Modification and Optical Concentration in Photovoltaics

The limiting efficiency for photovoltaic energy conversion based on a semiconductor pn-junction is typically determined using the method of detailed balance put forth by Shockley and Queisser. Here we describe how this theory is altered in the presence of a photonic structure that is capable of modifying the absorption and emission of photons. By incorporating specifically designed photonic structures, higher maximum efficiencies can be achieved for low bandgap materials by restricting the absorption and emission of above bandgap photons. Similarly, restriction of the emission angle leads to increased optical concentration. We consider how both of these effects are modified in the presence of a non-ideal photonic structure.

[1]  Thomas Kirchartz,et al.  Directional selectivity and ultra‐light‐trapping in solar cells , 2008 .

[2]  Tom Markvart,et al.  Thermodynamics of losses in photovoltaic conversion , 2007 .

[3]  J. Munday The effect of photonic bandgap materials on the Shockley-Queisser limit , 2012 .

[4]  J. L. Balenzategui,et al.  Photon recycling and Shockley’s diode equation , 1997 .

[5]  Eli Yablonovitch,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2012, IEEE Journal of Photovoltaics.

[6]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[7]  J. Joannopoulos,et al.  High Extraction Efficiency of Spontaneous Emission from Slabs of Photonic Crystals , 1997 .

[8]  Martin A. Green,et al.  Third generation photovoltaics: Ultra‐high conversion efficiency at low cost , 2001 .

[9]  Eli Yablonovitch,et al.  Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures , 1993 .

[10]  J. Dowling,et al.  Improving solar cell efficiency using photonic band-gap materials , 2007 .

[11]  C. D. Mathers,et al.  Upper limit of efficiency for photovoltaic solar cells , 1977 .

[12]  Majid Gharghi,et al.  Overcoming the bandgap limitation on solar cell materials , 2012 .

[13]  Benedikt Bläsi,et al.  Angular confinement and concentration in photovoltaic converters , 2010 .

[14]  Shanhui Fan,et al.  Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. , 2009, Optics express.

[15]  Eli Yablonovitch,et al.  Ultra-high Spontaneous Emission Quantum Efficiency, 99.7% Internally And 72% Externally, From AlGaAs/GaAs/AlGaAs Double Heterostructures , 1992, LEOS '92 Conference Proceedings.

[16]  Tom Markvart,et al.  Beyond the Yablonovitch limit: trapping light by frequency shift , 2011 .

[17]  Antonio Martí,et al.  Absolute limiting efficiencies for photovoltaic energy conversion , 1994 .

[18]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[19]  Daniel Feuermann,et al.  Photovoltaic performance enhancement by external recycling of photon emission , 2013 .

[20]  E. Yablonovitch Statistical ray optics , 1982 .

[21]  Benedikt Bläsi,et al.  Directionally selective light trapping in a germanium solar cell. , 2011, Optics express.