A Temperature-to-Digital Converter for a MEMS-Based Programmable Oscillator With $< \pm \hbox{0.5-ppm}$ Frequency Stability and $< \hbox{1-ps}$ Integrated Jitter

MEMS-based oscillators offer a silicon-based alternative to quartz-based frequency references. Here, a MEMS-based programmable oscillator is presented which achieves better than ±0.5-ppm frequency stability from -40°C to 85°C and less than 1-ps (rms) integrated phase noise (12 kHz to 20 MHz). A key component of this system is a thermistor-based temperature-to-digital converter (TDC) which enables accurate and low noise compensation of temperature-induced variation of the MEMS resonant frequency. The TDC utilizes several circuit techniques including a high-resolution tunable reference resistor based on a switched-capacitor network and fractional-N frequency division, a switched resistor measurement approach which allows a pulsed bias technique for reduced noise, and a VCO-based quantizer for digitization of the temperature signal. The TDC achieves 0.1-mK (rms) resolution within a 5-Hz bandwidth while consuming only 3.97 mA for all analog and digital circuits at 3.3-V supply in 180-nm CMOS.

[1]  A. Partridge,et al.  MEMS ENABLES OSCILLATORS WITH SUB-PPM FREQUENCY STABILITY AND SUB-PS JITTER , 2012 .

[2]  François Krummenacher,et al.  Silicon Resonator Based 3.2 $\mu$W Real Time Clock With $\pm$10 ppm Frequency Accuracy , 2010, IEEE Journal of Solid-State Circuits.

[3]  Brian P. Otis,et al.  A 750μW 1.575GHz temperature-stable FBAR-based PLL , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[4]  Jan M. Rabaey,et al.  A 0.013mm2 5μW DC-coupled neural signal acquisition IC with 0.5V supply , 2011, 2011 IEEE International Solid-State Circuits Conference.

[5]  Fred S. Lee,et al.  A temperature-to-digital converter for a MEMS-based programmable oscillator with better than ±0.5ppm frequency stability , 2012, 2012 IEEE International Solid-State Circuits Conference.

[6]  Maurits Ortmanns,et al.  Clock jitter insensitive continuous-time /spl Sigma//spl Delta/ modulators , 2001, ICECS 2001. 8th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.01EX483).

[7]  B. Otis,et al.  A digitally compensated 1.5 GHz CMOS/FBAR frequency reference , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[8]  J. Carpentier,et al.  Thermally stable oscillator at 2.5 GHz using temperature compensated BAW resonator and its integrated temperature sensor , 2008, 2008 IEEE Ultrasonics Symposium.

[9]  François Krummenacher,et al.  Silicon-resonator-based, 3µA real-time clock with ±5ppm frequency accuracy , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[10]  Michael S. McCorquodale,et al.  A Monolithic and Self-Referenced RF LC Clock Generator Compliant With USB 2.0 , 2007, IEEE Journal of Solid-State Circuits.

[11]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .

[12]  L. Richard Carley,et al.  An in-situ temperature-sensing interface based on a SAR ADC in 45nm LP digital CMOS for the frequency-temperature compensation of crystal oscillators , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[13]  R. Henry,et al.  Comparative analysis of MEMS, programmable, and synthesized frequency control devices versus traditional quartz based devices , 2008, 2008 IEEE International Frequency Control Symposium.

[14]  Michael S. McCorquodale,et al.  A 0.5-to-480MHz Self-Referenced CMOS Clock Generator with 90ppm Total Frequency Error and Spread-Spectrum Capability , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[15]  Jan M. Rabaey,et al.  A 0.013 ${\hbox {mm}}^{2}$, 5 $\mu\hbox{W}$ , DC-Coupled Neural Signal Acquisition IC With 0.5 V Supply , 2012, IEEE Journal of Solid-State Circuits.

[16]  Ian Galton,et al.  A Mostly-Digital Variable-Rate Continuous-Time Delta-Sigma Modulator ADC , 2010, IEEE Journal of Solid-State Circuits.

[17]  S. Okwit,et al.  ON SOLID-STATE CIRCUITS. , 1963 .

[18]  T.W. Kenny,et al.  Real-Time Temperature Compensation of MEMS Oscillators Using an Integrated Micro-Oven and a Phase-Locked Loop , 2010, Journal of Microelectromechanical Systems.

[19]  Gabor C. Temes,et al.  Incremental Delta-Sigma Structures for DC Measurement: an Overview , 2006, IEEE Custom Integrated Circuits Conference 2006.

[20]  Johan H. Huijsing,et al.  Precision Temperature Sensors in CMOS Technology , 2006 .

[21]  Kofi A. A. Makinwa,et al.  A CMOS temperature sensor with a voltage-calibrated inaccuracy of ±0.15°C (3σ) from −55 to 125°C , 2012, 2012 IEEE International Solid-State Circuits Conference.

[22]  Fred S. Lee,et al.  A programmable MEMS-based clock generator with sub-ps jitter performance , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[23]  Kofi A. A. Makinwa,et al.  A CMOS temperature sensor with a voltage-calibrated inaccuracy of ±0.15°C (3σ) from −55 to 125°C , 2012, 2012 IEEE International Solid-State Circuits Conference.

[24]  Kofi A. A. Makinwa,et al.  A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1°C from -55°C to 125°C , 2005, IEEE J. Solid State Circuits.

[25]  J. Rabaey,et al.  A 300-μW 1.9-GHz CMOS oscillator utilizing micromachined resonators , 2003, IEEE J. Solid State Circuits.

[26]  Fred S. Lee,et al.  A Low Area, Switched-Resistor Based Fractional-N Synthesizer Applied to a MEMS-Based Programmable Oscillator , 2010, IEEE Journal of Solid-State Circuits.

[27]  Wismar,et al.  A 0 . 2 V 0 . 44 μ W 20 kHz Analog to Digital Modulator with 57 fJ / conversion FoM , 2009 .

[28]  Michael H. Perrott,et al.  A numerical design approach for high speed, differential, resistor-loaded, CMOS amplifiers , 2004, 2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512).

[29]  Gianluca Piazza,et al.  Ovenized high frequency oscillators based on aluminum nitride contour-mode MEMS resonators , 2011, 2011 International Electron Devices Meeting.

[30]  Dennis M. Petrich,et al.  A new method for jitter decomposition through its distribution tail fitting , 1999, International Test Conference 1999. Proceedings (IEEE Cat. No.99CH37034).