Discrete Surface Ricci Flow: Theory and Applications

Conformal geometry is at the core of pure mathematics. Conformal structure is more flexible than Riemaniann metric but more rigid than topology. Conformal geometric methods have played important roles in engineering fields. This work introduces a theoretically rigorous and practically efficient method for computing Riemannian metrics with prescribed Gaussian curvatures on discrete surfaces--discrete surface Ricci flow, whose continuous counter part has been used in the proof of Poincare conjecture. Continuous Ricci flow conformally deforms a Riemannian metric on a smooth surface such that the Gaussian curvature evolves like a heat diffusion process. Eventually, the Gaussian curvature becomes constant and the limiting Riemannian metric is conformal to the original one. In the discrete case, surfaces are represented as piecewise linear triangle meshes. Since the Riemannian metric and the Gaussian curvature are discretized as the edge lengths and the angle deficits, the discrete Ricci flow can be defined as the deformation of edge lengths driven by the discrete curvature. The existence and uniqueness of the solution and the convergence of the flow process are theoretically proven, and numerical algorithms to compute Riemannian metrics with prescribed Gaussian curvatures using discrete Ricci flow are also designed. Discrete Ricci flow has broad applications in graphics, geometric modeling, and medical imaging, such as surface parameterization, surface matching, manifold splines, and construction of geometric structures on general surfaces.

[1]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[2]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[3]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[4]  Shing-Tung Yau,et al.  Global Conformal Parameterization , 2003, Symposium on Geometry Processing.

[5]  Philip L. Bowers,et al.  INTRODUCTION TO CIRCLE PACKING: A REVIEW , 2008 .

[6]  Christian Rössl,et al.  Setting the boundary free: a composite approach to surface parameterization , 2005, SGP '05.

[7]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[8]  LévyBruno,et al.  Least squares conformal maps for automatic texture atlas generation , 2002 .

[9]  Denis Zorin,et al.  Surface modeling and parameterization with manifolds , 2005, SIGGRAPH Courses.

[10]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .

[11]  P. Hacking,et al.  Riemann Surfaces , 2007 .

[12]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[13]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[14]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[15]  Pierre Alliez,et al.  Designing quadrangulations with discrete harmonic forms , 2006, SGP '06.

[16]  T. Chan,et al.  Genus zero surface conformal mapping and its application to brain surface mapping. , 2004, IEEE transactions on medical imaging.

[17]  C. Mercat Discrete Riemann Surfaces and the Ising Model , 2001, 0909.3600.

[18]  Richard S. Hamilton,et al.  The Ricci flow on surfaces , 1986 .

[19]  Alla Sheffer,et al.  Parameterization of Faceted Surfaces for Meshing using Angle-Based Flattening , 2001, Engineering with Computers.

[20]  Boris Springborn,et al.  Variational principles for circle patterns , 2003, math/0312363.

[21]  Craig Gotsman,et al.  Discrete one-forms on meshes and applications to 3D mesh parameterization , 2006, Comput. Aided Geom. Des..

[22]  Hong Qin,et al.  Manifold splines , 2006, Graph. Model..

[23]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[24]  Y. C. Verdière Un principe variationnel pour les empilements de cercles , 1991 .

[25]  G. Perelman Ricci flow with surgery on three-manifolds , 2003, math/0303109.

[26]  Vladislav Kraevoy,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, SIGGRAPH 2004.

[27]  Bruno Lévy,et al.  ABF++: fast and robust angle based flattening , 2005, TOGS.

[28]  Denis Zorin,et al.  Surface modeling and parameterization with manifolds: Siggraph 2006 course notes (Author presenation videos are available from the citation page) , 2006, SIGGRAPH Courses.

[29]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[30]  Hong Qin,et al.  Manifold splines with single extraordinary point , 2007, Symposium on Solid and Physical Modeling.

[31]  Kenneth Stephenson,et al.  A circle packing algorithm , 2003, Comput. Geom..

[32]  Leif Kobbelt,et al.  An intuitive framework for real-time freeform modeling , 2004, SIGGRAPH 2004.

[33]  W. Thurston The geometry and topology of three-manifolds , 1979 .

[34]  Bennett Chow,et al.  The Ricci flow on the 2-sphere , 1991 .

[35]  Xianfeng Gu,et al.  Computing surface hyperbolic structure and real projective structure , 2006, SPM '06.

[36]  B. Chow,et al.  The Ricci flow on surfaces , 2004 .

[37]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[38]  G. Perelman Finite extinction time for the solutions to the Ricci flow on certain three-manifolds , 2003, math/0307245.

[39]  Yalin Wang,et al.  Optimal global conformal surface parameterization , 2004, IEEE Visualization 2004.

[40]  B. Rodin,et al.  The convergence of circle packings to the Riemann mapping , 1987 .

[41]  Steven H. Weintraub,et al.  Differential Forms: A Complement to Vector Calculus , 1997 .

[42]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[43]  B. Chow,et al.  COMBINATORIAL RICCI FLOWS ON SURFACES , 2002, math/0211256.

[44]  A. Bobenko,et al.  Variational principles for circle patterns and Koebe’s theorem , 2002, math/0203250.

[45]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[46]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .