On the Lagrangian structure of transport equations: relativistic Vlasov systems
暂无分享,去创建一个
[1] F. Golse,et al. Classical Solutions and the Glassey-Strauss Theorem for the 3D Vlasov-Maxwell System , 2003 .
[2] G. Manfredi. Non-relativistic limits of Maxwell’s equations , 2013, 1303.5608.
[3] Jack Schaeffer,et al. On global symmetric solutions to the relativistic Vlasov–Poisson equation in three space dimensions , 2001 .
[4] Maria Colombo. Flows of Non-smooth Vector Fields and Degenerate Elliptic Equations , 2017 .
[5] L. Ambrosio,et al. Existence and Uniqueness of Maximal Regular Flows for Non-smooth Vector Fields , 2014, 1406.3701.
[6] P. Lions,et al. Solutions globales d'équations du type Vlasov-Poisson , 1988 .
[7] Jack Schaeffer,et al. On symmetric solutions of the relativistic Vlasov-Poisson system , 1985 .
[8] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[9] S. Klainerman,et al. A new approach to study the Vlasov-Maxwell system , 2001 .
[10] Walter A. Strauss,et al. Singularity formation in a collisionless plasma could occur only at high velocities , 1986 .
[11] P. Lions,et al. Ordinary differential equations, transport theory and Sobolev spaces , 1989 .
[12] G. Mingione,et al. The Singular Set of Minima of Integral Functionals , 2006 .
[13] Maria Colombo,et al. On the Lagrangian structure of transport equations: the Vlasov-Poisson system , 2014, 1412.3608.