Multi-electron reaction materials for high energy density batteries

The need for high energy density batteries becomes increasingly important for the development of new and clean energy technologies, such as electric vehicles and electrical storage from wind and solar power. The search for new energetic materials of primary and secondary batteries with higher energy density has been highlighted in recent years. This review surveys recent advances in the research field of high energy density electrode materials with focus on multi-electron reaction chemistry of light-weight elements and compounds. In the first section, we briefly introduce the basic strategies for enhancement of the energy density of primary batteries based on multi-electron reactions. The following sections present overviews of typical electrode materials with multi-electron chemistry and their secondary battery applications in aqueous and non-aqueous electrolytes. Finally, the challenges and ongoing research strategies of these novel electrode materials and battery systems for high density energy storage and conversion are discussed.

[1]  J. Witte,et al.  Zur kenntnis der nickelhydroxidelektrode—I.Über das nickel (II)-hydroxidhydrat , 1966 .

[2]  F. Beck,et al.  Rechargeable batteries with aqueous electrolytes , 2000 .

[3]  Z. Wen,et al.  A novel composite containing nanosized silicon and tin as anode material for lithium ion batteries , 2009 .

[4]  D. Noréus,et al.  Alpha Nickel Hydroxides as Lightweight Nickel Electrode Materials for Alkaline Rechargeable Cells , 2003 .

[5]  Jiro Iriyama,et al.  Al-laminated film packaged organic radical battery for high-power applications , 2007 .

[6]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[7]  Stuart Licht,et al.  High capacity alkaline super-iron boride battery , 2007 .

[8]  Yuriy V. Mikhaylik,et al.  Li/S fundamental chemistry and application to high-performance rechargeable batteries , 2004 .

[9]  Min Gyu Kim,et al.  Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries , 2009 .

[10]  D. Murphy,et al.  Topochemical reactions of rutile related structures with lithium , 1978 .

[11]  Yu‐Guo Guo,et al.  Introducing Dual Functional CNT Networks into CuO Nanomicrospheres toward Superior Electrode Materials for Lithium-Ion Batteries , 2008 .

[12]  Jean-Marie Tarascon,et al.  From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. , 2008, ChemSusChem.

[13]  B. H. Liu,et al.  Current status and progress of direct borohydride fuel cell technology development , 2009 .

[14]  Michael M. Thackeray,et al.  Lithium reactions with intermetallic-compound electrodes , 2002 .

[15]  N. Sharma,et al.  Sol–gel derived nano-crystalline CaSnO3 as high capacity anode material for Li-ion batteries , 2002 .

[16]  Jing Yu Zhang,et al.  Sulfides organic polymer: Novel cathode active material for rechargeable lithium batteries , 2007 .

[17]  J. Yamaki,et al.  Optimized Structure of Silicon/Carbon/Graphite Composites as an Anode Material for Li-Ion Batteries , 2006 .

[18]  Sharon L. Blair,et al.  High-Capacity Lithium–Air Cathodes , 2009 .

[19]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[20]  Guoran Li,et al.  Si–AB5 composites as anode materials for lithium ion batteries , 2007 .

[21]  T. Sakai,et al.  Structural Analysis by Synchrotron XRD and XAFS for Manganese-Substituted α - and β -Type Nickel Hydroxide Electrode , 2008 .

[22]  P. Bruce,et al.  An O2 cathode for rechargeable lithium batteries: The effect of a catalyst , 2007 .

[23]  Stuart Licht,et al.  Advances in Fe(VI) charge storage: Part I. Primary alkaline super-iron batteries , 2007 .

[24]  N. Sammes,et al.  Water-Stable Lithium Anode with the Three-Layer Construction for Aqueous Lithium–Air Secondary Batteries , 2009 .

[25]  Sang-Cheol Han,et al.  Effect of Multiwalled Carbon Nanotubes on Electrochemical Properties of Lithium/Sulfur Rechargeable Batteries , 2003 .

[26]  Y. Lei,et al.  Electrochemical Behaviour of Some Mechanically Alloyed Mg — Ni-Based Amorphous Hydrogen Storage Alloys* , 1994 .

[27]  Hiroki Sakaguchi,et al.  Hydrogen storage in proton-conductive perovskite-type oxides and their application to nickel–hydrogen batteries , 2004 .

[28]  Xueping Gao,et al.  Alkaline rechargeable Ni/Co batteries: Cobalt hydroxides as negative electrode materials , 2009 .

[29]  C. Sequeira,et al.  Electrochemical properties of the ball-milled La1.8Ca0.2Mg14Ni3+xwt%Ni composites (x=0, 50, 100 and 200) , 2003 .

[30]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[31]  Huaiyong Zhu,et al.  Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery , 2004 .

[32]  J. Yamaki,et al.  Electrochemical properties of nano-sized Fe2O3-loaded carbon as a lithium battery anode , 2006 .

[33]  Jun Chen,et al.  Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries , 2008 .

[34]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[35]  N. Munichandraiah,et al.  Reversibility of Mg/Mg2+ couple in a gel polymer electrolyte , 1999 .

[36]  John B. Goodenough,et al.  Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates , 1997 .

[37]  Nansheng Xu,et al.  Sulfur Composite Cathode Materials for Rechargeable Lithium Batteries , 2003 .

[38]  S. Licht,et al.  Hydroxide Activated AgMnO4 Alkaline Cathodes, Alone and in Combination with Fe(VI) Super-Iron, BaFeO4 , 2001 .

[39]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[40]  G. Cao,et al.  Electrochemical performances of Si-coated MCMB as anode material in lithium-ion cells , 2004 .

[41]  K. Striebel,et al.  Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes , 2000 .

[42]  Brian C. H. Steele,et al.  Poly(ethylene oxide) electrolytes for operation at near room temperature , 1985 .

[43]  Shichao Zhang,et al.  Nano-wire networks of sulfur–polypyrrole composite cathode materials for rechargeable lithium batteries , 2008 .

[44]  X. Zhang,et al.  Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes , 2009 .

[45]  H. X. Yang,et al.  Carbon/Ba–Fe–Si alloy composite as high capacity anode materials for Li-ion batteries , 2003 .

[46]  Shigeyuki Iwasa,et al.  Organic radical battery: nitroxide polymers as a cathode-active material , 2004 .

[47]  Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery. , 2006, The journal of physical chemistry. B.

[48]  V. Sharma,et al.  Research progress in the electrochemical synthesis of ferrate(VI) , 2009 .

[49]  Gang Wang,et al.  Hydrothermal synthesis of Co2SnO4 nanocrystals as anode materials for Li-ion batteries , 2009 .

[50]  C. Cao,et al.  Al-substituted α-nickel hydroxide prepared by homogeneous precipitation method with urea , 2004 .

[51]  Phl Peter Notten,et al.  Hydrogen storage in metastable MgyTi(1 y) thin films , 2006 .

[52]  Jou-Hyeon Ahn,et al.  Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell , 2008 .

[53]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[54]  Xianglan Wu,et al.  Synthesis and Electrode Properties of α ‐ Fe2 O 3 from Iron Phtalocyanine , 1999 .

[55]  P. Kumta,et al.  Nanostructured Si / TiB2 Composite Anodes for Li-Ion Batteries , 2003 .

[56]  Stuart Licht,et al.  Enhancement of Reversible Nonaqueous Fe(III/VI) Cathodic Charge Transfer , 2009 .

[57]  N. Munichandraiah,et al.  ELECTROCHEMICALLY IMPREGNATED ALUMINUM-STABILIZED ALPHA -NICKEL HYDROXIDE ELECTRODES , 1999 .

[58]  Yunhong Zhou,et al.  Poly[3,4-(ethylenedithio)thiophene] : High specific capacity cathode active material for lithium rechargeable batteries , 2008 .

[59]  Stuart Licht,et al.  Stabilized Alkaline Fe ( VI ) Charge Transfer The Zirconia Coating Stabilized Superiron Alkaline Cathode , 2008 .

[60]  Sylvie Grugeon,et al.  Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium , 2001 .

[61]  N. Munichandraiah,et al.  Electrochemical studies of cobalt hydroxide — an additive for nickel electrodes , 2001 .

[62]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[63]  K. M. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[64]  J. Shim,et al.  The Lithium/Sulfur Rechargeable Cell Effects of Electrode Composition and Solvent on Cell Performance , 2002 .

[65]  B. Scrosati,et al.  A High‐Rate, High‐Capacity, Nanostructured Tin Oxide Electrode , 1999 .

[66]  J. Jamnik,et al.  Nanocrystallinity effects in lithium battery materials , 2003 .

[67]  Chunjoong Kim,et al.  Electrochemical Properties of Disordered-Carbon-Coated SnO2 Nanoparticles for Li Rechargeable Batteries , 2006 .

[68]  Hiroyuki Nishide,et al.  Emerging N‐Type Redox‐Active Radical Polymer for a Totally Organic Polymer‐Based Rechargeable Battery , 2009 .

[69]  G. R. Li,et al.  Preparation and electrochemical properties of Co–Si3N4 nanocomposites , 2008 .

[70]  Jean-Marie Tarascon,et al.  Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery. , 2009, Journal of the American Chemical Society.

[71]  H. Ewe,et al.  Elektrochemische Speicherung und Oxidation von Wasserstoff mit der intermetallischen Verbindung LaNi5 , 1973 .

[72]  Jinkui Feng,et al.  Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte , 2006 .

[73]  Huaiyong Zhu,et al.  Phase Distribution and Electrochemical Properties of Al-Substituted Nickel Hydroxides , 2007 .

[74]  Joachim Maier,et al.  Reversible Formation and Decomposition of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries , 2003 .

[75]  Wenbin Zheng,et al.  Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries , 2006 .

[76]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[77]  J. Tu,et al.  Spherical NiO-C composite for anode material of lithium ion batteries , 2007 .

[78]  Jean-Marie Tarascon,et al.  Electrochemical Reactivity of Lithium Chloranilate vs Li and Crystal Structures of the Hydrated Phases , 2009 .

[79]  Xiang‐qian Shen,et al.  Electrochemical properties of La1−xSrxFeO3 (x = 0.2, 0.4) as negative electrode of Ni–MH batteries , 2009 .

[80]  J. Dahn,et al.  Al–Si Thin-Film Negative Electrodes for Li-Ion Batteries , 2008 .

[81]  H. X. Yang,et al.  Exceptional electrochemical activities of amorphous Fe–B and Co–B alloy powders used as high capacity anode materials , 2004 .

[82]  H. X. Yang,et al.  Polytriphenylamine: A high power and high capacity cathode material for rechargeable lithium batteries , 2008 .

[83]  B. Scrosati,et al.  A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes , 1980 .

[84]  P. Balaya Size effects and nanostructured materials for energy applications , 2008 .

[85]  K. Oyaizu,et al.  Radical Polymers for Organic Electronic Devices: A Radical Departure from Conjugated Polymers? , 2009 .

[86]  Phl Peter Notten,et al.  Electrochemical hydrogen storage characteristics of thin film MgX (X = Sc, Ti, V, Cr) compounds , 2005 .

[87]  Tao Zhang,et al.  Li∕Polymer Electrolyte∕Water Stable Lithium-Conducting Glass Ceramics Composite for Lithium–Air Secondary Batteries with an Aqueous Electrolyte , 2008 .

[88]  Yuliang Cao,et al.  Electrooxidation mechanisms and discharge characteristics of borohydride on different catalytic metal surfaces. , 2005, The journal of physical chemistry. B.

[89]  Kenichiroh Koshika,et al.  An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte. , 2009, Chemical communications.

[90]  T. Takamura,et al.  A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life , 2004 .

[91]  J. Tarascon,et al.  New Approaches for Synthesizing γIII-CoOOH by Soft Chemistry , 2004 .

[92]  Zhaolin Liu,et al.  Si–O network encapsulated graphite–silicon mixtures as negative electrodes for lithium-ion batteries , 2001 .

[93]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[94]  S. S. Sandhu,et al.  Diffusion-limited model for a lithium/air battery with an organic electrolyte , 2007 .

[95]  C. Ponce de León,et al.  Direct borohydride fuel cells , 2006 .

[96]  Robert Joseph Cava,et al.  Lithium Insertion in Wadsley‐Roth Phases Based on Niobium Oxide , 1983 .

[97]  Zhen Zhou,et al.  Preparation and electrochemical properties of sulfur–acetylene black composites as cathode materials , 2009 .

[98]  Stuart Licht,et al.  A novel alkaline redox couple: chemistry of the Fe(6+)/B(2-) super-iron boride battery. , 2007, Chemical communications.

[99]  Jiulin Wang,et al.  Charge/discharge characteristics of sulfur composite cathode materials in rechargeable lithium batteries , 2007 .

[100]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[101]  Taolei Sun,et al.  Aromatic Carbonyl Derivative Polymers as High‐Performance Li‐Ion Storage Materials , 2007 .

[102]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[103]  Mark N. Obrovac,et al.  Structural changes in silicon anodes during lithium insertion/extraction , 2004 .

[104]  Xueping Gao,et al.  Microstructure and Electrochemical Properties of Al-Substituted Nickel Hydroxides Modified with CoOOH Nanoparticles , 2007 .

[105]  Z. Lu,et al.  Microstructure and electrochemical properties of the Co–BN composites , 2008 .

[106]  Stuart Licht,et al.  Advances in Fe(VI) charge storage: Part II. Reversible alkaline super-iron batteries and nonaqueous super-iron batteries , 2007 .

[107]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[108]  Elton J. Cairns,et al.  N-Methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI–poly(ethylene glycol) dimethyl ether mixture as a Li/S cell electrolyte , 2008 .

[109]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[110]  Yunhong Zhou,et al.  Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. , 2009, Chemical communications.

[111]  P. Kumta,et al.  Si / TiN Nanocomposites Novel Anode Materials for Li ‐ Ion Batteries , 1999 .

[112]  Electrochemical performance of sulfur composite cathode materials for rechargeable lithium batteries , 2009 .

[113]  H. X. Yang,et al.  Metal Borides: Competitive High Capacity Anode Materials for Aqueous Primary Batteries , 2004 .

[114]  Feng Wu,et al.  Electrochemical Reduction Mechanism of Fe(VI) at a Porous Pt Black Electrode , 2009 .

[115]  Glenn G. Amatucci,et al.  Fluoride based electrode materials for advanced energy storage devices , 2007 .

[116]  Glenn G. Amatucci,et al.  Carbon Metal Fluoride Nanocomposites High-Capacity Reversible Metal Fluoride Conversion Materials as Rechargeable Positive Electrodes for Li Batteries , 2003 .

[117]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[118]  Jeffrey Read,et al.  Characterization of the Lithium/Oxygen Organic Electrolyte Battery , 2002 .

[119]  D. Noréus,et al.  Synthesis of CoOOH nanorods and application as coating materials of nickel hydroxide for high temperature Ni-MH cells. , 2005, The journal of physical chemistry. B.

[120]  Guoxiu Wang,et al.  Electrochemical Performance of Co3O4–C Composite Anode Materials , 2006 .

[121]  Hiroyuki Nishide,et al.  Cathode- and Anode-Active Poly(nitroxylstyrene)s for Rechargeable Batteries: p- and n-Type Redox Switching via Substituent Effects , 2007 .

[122]  Doron Aurbach,et al.  Nonaqueous magnesium electrochemistry and its application in secondary batteries. , 2003, Chemical record.

[123]  M. Armand,et al.  Building better batteries , 2008, Nature.

[124]  P. Kumta,et al.  Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries , 2007 .

[125]  P. Novák,et al.  Electrochemically Active Polymers for Rechargeable Batteries. , 1997, Chemical reviews.

[126]  Xingwen Yu,et al.  An alkaline periodate cathode and its unusual solubility behavior in KOH , 2007 .

[127]  Hajime Arai,et al.  Cathode performance and voltage estimation of metal trihalides , 1997 .

[128]  Y. L. Cao,et al.  Multilayered Nanocrystalline SnO2 Hollow Microspheres Synthesized by Chemically Induced Self-Assembly in the Hydrothermal Environment , 2007 .

[129]  S. Dou,et al.  Lithium insertion in Si–TiC nanocomposite materials produced by high-energy mechanical milling , 2005 .

[130]  K. Bouzek,et al.  Comparison of Ferrate(VI) Synthesis in Eutectic NaOH–KOH Melts and in Aqueous Solutions , 2008 .

[131]  Feng Wu,et al.  Structural and electrochemical properties of a K2FeO4 cathode for rechargeable Li ion batteries , 2009 .

[132]  Feng Li,et al.  Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries , 2006 .

[133]  Jaephil Cho,et al.  High capacity carbon-coated Si70Sn30 nanoalloys for lithium battery anode material. , 2008, Chemical communications.

[134]  X. Ai,et al.  A simple and high efficient direct borohydride fuel cell with MnO2-catalyzed cathode , 2005 .

[135]  Stuart Licht,et al.  Renewable highest capacity VB2/air energy storage. , 2008, Chemical communications.

[136]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[137]  Electrochemistry of boron compounds , 1985 .

[138]  John R. Owen,et al.  Poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene): a new organic polymer as positive electrode material for rechargeable lithium batteries , 2003 .

[139]  Xinping Qiu,et al.  Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries , 2009 .

[140]  Yueming Sun,et al.  Behavior of a Layered Double Hydroxide under High Current Density Charge and Discharge Cycles , 2009 .

[141]  Arumugam Manthiram,et al.  Nanostructured electrode materials for electrochemical energy storage and conversion , 2008 .

[142]  Ju-tang Sun,et al.  Synthesis and electrochemical performance of nanosized Co3O4 , 2003 .

[143]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[144]  Gang Wang,et al.  Electrochemical performance of Si–CeMg12 composites as anode materials for Li-ion batteries , 2009 .

[145]  C. Delmas,et al.  The effect of cobalt on the chemical and electrochemical behaviour of the nickel hydroxide electrode , 1992 .

[146]  Yunhong Zhou,et al.  Poly(tetrahydrobenzodithiophene): High discharge specific capacity as cathode material for lithium batteries , 2009 .

[147]  Y. Sharma,et al.  Lithium-storage and cycleability of nano-CdSnO3 as an anode material for lithium-ion batteries , 2009 .

[148]  J. Irvine,et al.  Novel tin oxide spinel-based anodes for Li-ion batteries , 2001 .

[149]  T. Gerdes,et al.  Carbon–fiber–silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition , 2009 .

[150]  Ryne P. Raffaelle,et al.  Carbon nanotubes for lithium ion batteries , 2009 .

[151]  E. Peled,et al.  Lithium‐Sulfur Battery: Evaluation of Dioxolane‐Based Electrolytes , 1989 .

[152]  Nathalie Pereira,et al.  Carbon-Metal Fluoride Nanocomposites Structure and Electrochemistry of FeF3: C , 2003 .

[153]  Zhen Zhou,et al.  Synthesis and Electrochemical Performance of Sulfur/Highly Porous Carbon Composites , 2009 .

[154]  Licht,et al.  Energetic Iron(VI) chemistry: the super-iron battery , 1999, Science.