Crystal structure of cutinase covalently inhibited by a triglyceride analogue

Cutinase from Fusarium solani is a lipolytic enzyme that hydrolyses triglycerides efficiently. All the inhibited forms of lipolytic enzymes described so far are based on the use of small organophosphate and organophosphonate inhibitors, which bear little resemblance to a natural triglyceride substrate. In this article we describe the crystal structure of cutinase covalently inhibited by (R)‐1,2‐dibutyl‐carbamoylglycero‐3‐O‐p‐nitrophenylbutyl‐phosphonate, a triglyceride analogue mimicking the first tetrahedral intermediate along the reaction pathway. The structure, which has been solved at 2.3 Å, reveals that in both the protein molecules of the asymmetric unit the inhibitor is almost completely embedded in the active site crevice. The overall shape of the inhibitor is that of a fork: the two dibutyl‐carbamoyl chains point towards the surface of the protein, whereas the butyl chain bound to the phosphorous atom is roughly perpendicular to the sn‐1 and sn‐2 chains. The sn‐3 chain is accommodated in a rather small pocket at the bottom of the active site crevice, thus providing a structural explanation for the preference of cutinase for short acyl chain substrates.

[1]  A. Murdoch Cloning , 2007, Ethics & Medics.

[2]  C. Cambillau,et al.  Acyl glycerol hydrolases: inhibitors, interface and catalysis. , 1996, Current opinion in structural biology.

[3]  D. Pignol,et al.  Lipase Activation by Nonionic Detergents , 1996, The Journal of Biological Chemistry.

[4]  D. Schomburg,et al.  Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 angstroms resolution. , 1996, Journal of molecular biology.

[5]  C. Cambillau,et al.  Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state. , 1996, Biochemistry.

[6]  D Blumenthal,et al.  Relationships between academic institutions and industry in the life sciences--an industry survey. , 1996, The New England journal of medicine.

[7]  H. F. Fisher,et al.  Interpretation of transient-state kinetic isotope effects. , 1996, Biochemistry.

[8]  G J Kleywegt,et al.  Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. , 1995, Biochemistry.

[9]  M. Egmond,et al.  Phosphonate analogues of triacylglycerols are potent inhibitors of lipase. , 1995, Biochimica et biophysica acta.

[10]  M. Egmond,et al.  Cutinase from Fusarium solani pisi hydrolyzing triglyceride analogues. Effect of acyl chain length and position in the substrate molecule on activity and enantioselectivity. , 1995, Biochemistry.

[11]  J. Schrag,et al.  Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase. , 1995, Biochemistry.

[12]  Janet L. Schottel,et al.  A novel variant of the catalytic triad in the Streptomyces scabies esterase , 1995, Nature Structural Biology.

[13]  W. Pangborn,et al.  Structure of uncomplexed and linoleate-bound Candida cylindracea cholesterol esterase. , 1995, Structure.

[14]  Miroslaw Cygler,et al.  A Structural Basis for the Chiral Preferences of Lipases , 1995 .

[15]  H. van Tilbeurgh,et al.  The 2.46 A resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate. , 1994, Biochemistry.

[16]  T A Jones,et al.  The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. , 1994, Structure.

[17]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[18]  B Rubin,et al.  Insights into interfacial activation from an open structure of Candida rugosa lipase. , 1994, The Journal of biological chemistry.

[19]  C Cambillau,et al.  Cutinase, a lipolytic enzyme with a preformed oxyanion hole. , 1994, Biochemistry.

[20]  H. Jörnvall,et al.  Monomeric and dimeric forms of cholesterol esterase from Candida cylindracea , 1994, FEBS letters.

[21]  J. Schrag,et al.  Two conformational states of Candida rugosa lipase , 1994, Protein science : a publication of the Protein Society.

[22]  L. Johnson,et al.  The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate , 1993, FEBS letters.

[23]  H. Tilbeurgh,et al.  Interfacial activation of the lipase–procolipase complex by mixed micelles revealed by X-ray crystallography , 1993, Nature.

[24]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[25]  J. Schrag,et al.  1.8 A refined structure of the lipase from Geotrichum candidum. , 1993, Journal of molecular biology.

[26]  C. Cambillau,et al.  Engineering cysteine mutants to obtain crystallographic phases with a cutinase from Fusarium solani pisi. , 1993, Protein engineering.

[27]  Axel T. Brunger,et al.  Model bias in macromolecular crystal structures , 1992 .

[28]  H. Tilbeurgh,et al.  Structure of the pancreatic lipase–procolipase complex , 1992, Nature.

[29]  F. Faustinella,et al.  Lipases: three-dimensional structure and mechanism of action , 1992 .

[30]  C. Cambillau,et al.  Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent , 1992, Nature.

[31]  Joel L. Sussman,et al.  The α/β hydrolase fold , 1992 .

[32]  D. Lawson,et al.  Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. , 1992, Biochemistry.

[33]  A. Goldman,et al.  Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein , 1991, Science.

[34]  J. Schrag,et al.  Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candidum , 1991, Nature.

[35]  L. Thim,et al.  A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex , 1991, Nature.

[36]  C. Abergel,et al.  Crystallization and preliminary X-ray study of a recombinant cutinase from Fusarium solani pisi. , 1990, Journal of molecular biology.

[37]  F. Winkler,et al.  Structure of human pancreatic lipase , 1990, Nature.

[38]  L. Norskov,et al.  A serine protease triad forms the catalytic centre of a triacylglycerol lipase , 1990, Nature.

[39]  Wolfgang Kabsch,et al.  Evaluation of Single-Crystal X-ray Diffraction Data from a Position-Sensitive Detector , 1988 .

[40]  Wolfgang Kabsch,et al.  Automatic indexing of rotation diffraction patterns , 1988 .

[41]  R. Read Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[42]  L. Sarda,et al.  Action de la lipase pancréatique sur les esters en émulsion , 1958 .

[43]  D. Pignol,et al.  THE CRYSTAL STRUCTURE OF THE PORCINE LIPASE-COLIPASE-TETRAETHYLENE GLYCOL MONOOCTYL ETHER COMPLEX* , 1996 .

[44]  R. Verger,et al.  LIPASE STEREOSELECTIVITY AND REGIOSELECTIVITY TOWARD THREE ISOMERS OF DICAPRIN : A KINETIC STUDY BY THE MONOMOLECULAR FILM TECHNIQUE , 1995 .

[45]  H. Tilbeurgh,et al.  Structure of hydrolases: lipases and cellulases , 1993 .

[46]  I. Maiti,et al.  Cutinases from fungi and pollen , 1981 .

[47]  J. Kraut Serine proteases: structure and mechanism of catalysis. , 1977, Annual review of biochemistry.

[48]  R. Verger,et al.  Interfacial enzyme kinetics of lipolysis. , 1976, Annual review of biophysics and bioengineering.