GRID: A Python Package for Field Plot Phenotyping Using Aerial Images

[1]  P. Penev,et al.  Creating and analysing the Digital Terrain Model of the Slivovo area using QGIS software , 2017 .

[2]  A. Gitelson,et al.  Use of a green channel in remote sensing of global vegetation from EOS- MODIS , 1996 .

[3]  H. Sebastian Seung,et al.  Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification , 2017, Bioinform..

[4]  J. G. White,et al.  Aerial Color Infrared Photography for Determining Early In‐Season Nitrogen Requirements in Corn , 2005 .

[5]  Kelly R. Thorp,et al.  Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function , 2015, PloS one.

[6]  S. Miklavcic,et al.  An Automatic Field Plot Extraction Method From Aerial Orthomosaic Images , 2019, Front. Plant Sci..

[7]  Qin Zhang,et al.  A Review of Imaging Techniques for Plant Phenotyping , 2014, Sensors.

[8]  Arnold R. Salvacion,et al.  Terrain characterization of small island using publicly available data and open- source software: a case study of Marinduque, Philippines , 2016, Modeling Earth Systems and Environment.

[9]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[10]  Ong Hang See,et al.  Visualization Techniques in Smart Grid , 2012 .

[11]  Jude H. Kastens,et al.  Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data , 2013 .

[12]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[13]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[14]  Masayuki Hirafuji,et al.  Easy MPE: Extraction of Quality Microplot Images for UAV-Based High-Throughput Field Phenotyping , 2019, Plant phenomics.