Local Transform Features and Hybridization for Accurate Face and Human Detection

We propose two novel local transform features: local gradient patterns (LGP) and binary histograms of oriented gradients (BHOG). LGP assigns one if the neighboring gradient of a given pixel is greater than its average of eight neighboring gradients and zero otherwise, which makes the local intensity variations along the edge components robust. BHOG assigns one if the histogram bin has a higher value than the average value of the total histogram bins, and zero otherwise, which makes the computation time fast due to no further postprocessing and SVM classification. We also propose a hybrid feature that combines several local transform features by means of the AdaBoost method, where the best feature having the lowest classification error is sequentially selected until we obtain the required classification performance. This hybridization makes face and human detection robust to global illumination changes by LBP, local intensity changes by LGP, and local pose changes by BHOG, which considerably improves detection performance. We apply the proposed features to face detection using the MIT+CMU and FDDB databases and human detection using the INRIA and Caltech databases. Our experimental results indicate that the proposed LGP and BHOG feature attain accurate detection performance and fast computation time, respectively, and the hybrid feature improves face and human detection performance considerably.

[1]  Mei-Chen Yeh,et al.  Fast Human Detection Using a Cascade of Histograms of Oriented Gradients , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[2]  Sébastien Marcel,et al.  Local binary patterns as an image preprocessing for face authentication , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).

[3]  Wen Gao,et al.  Locally Assembled Binary (LAB) feature with feature-centric cascade for fast and accurate face detection , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Matti Pietikäinen,et al.  Dynamic Texture Based Gait Recognition , 2009, ICB.

[5]  Oscar Déniz-Suárez,et al.  Face recognition using Histograms of Oriented Gradients , 2011, Pattern Recognit. Lett..

[6]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[8]  Pietro Perona,et al.  Pedestrian Detection: An Evaluation of the State of the Art , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Stan Z. Li,et al.  Shape localization based on statistical method using extended local binary pattern , 2004, Third International Conference on Image and Graphics (ICIG'04).

[10]  Bernt Schiele,et al.  New features and insights for pedestrian detection , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  Dan Levi,et al.  Part-Based Feature Synthesis for Human Detection , 2010, ECCV.

[12]  Greg Mori,et al.  Detecting Pedestrians by Learning Shapelet Features , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[14]  David A. McAllester,et al.  A discriminatively trained, multiscale, deformable part model , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[15]  Jean Meunier,et al.  Emotion recognition using dynamic grid-based HoG features , 2011, Face and Gesture 2011.

[16]  Shuicheng Yan,et al.  An HOG-LBP human detector with partial occlusion handling , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[17]  David A. McAllester,et al.  Cascade object detection with deformable part models , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  Zhuowen Tu,et al.  Feature Mining for Image Classification , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Changyin Sun,et al.  Gender Classification Based on Boosting Local Binary Pattern , 2006, ISNN.

[20]  Cordelia Schmid,et al.  Human Detection Based on a Probabilistic Assembly of Robust Part Detectors , 2004, ECCV.

[21]  Wen Gao,et al.  Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[22]  Andreas Ernst,et al.  Face detection with the modified census transform , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[23]  Larry S. Davis,et al.  Bilattice-based Logical Reasoning for Human Detection , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Pietro Perona,et al.  Integral Channel Features , 2009, BMVC.

[25]  Sébastien Marcel,et al.  Fast Bounding Box Estimation based Face Detection , 2010 .

[26]  Tomaso A. Poggio,et al.  A Trainable System for Object Detection , 2000, International Journal of Computer Vision.

[27]  Erik G. Learned-Miller,et al.  Online domain adaptation of a pre-trained cascade of classifiers , 2011, CVPR 2011.

[28]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[29]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  M. Pietikäinen,et al.  Facial expression recognition based on local binary patterns , 2007, Pattern Recognition and Image Analysis.

[31]  M. Pietikäinen,et al.  FACIAL EXPRESSION RECOGNITION WITH LOCAL BINARY PATTERNS AND LINEAR PROGRAMMING , 2004 .

[32]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[33]  Tao Wang,et al.  Face detection using SURF cascade , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[34]  Ian Reid,et al.  fastHOG – a real-time GPU implementation of HOG , 2011 .

[35]  Hanqing Lu,et al.  Face detection using improved LBP under Bayesian framework , 2004, Third International Conference on Image and Graphics (ICIG'04).

[36]  Matti Pietikäinen,et al.  Block-Based Methods for Image Retrieval Using Local Binary Patterns , 2005, SCIA.

[37]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[39]  Erik Learned-Miller,et al.  FDDB: A benchmark for face detection in unconstrained settings , 2010 .

[40]  M. Pietikäinen,et al.  Facial Expression Recognition with Local Binary Patterns and Linear Programming 1 , 2005 .

[41]  Larry S. Davis,et al.  A Pose-Invariant Descriptor for Human Detection and Segmentation , 2008, ECCV.

[42]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2005, International Journal of Computer Vision.

[43]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Pietro Perona,et al.  The Fastest Pedestrian Detector in the West , 2010, BMVC.

[45]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[46]  Shengcai Liao,et al.  Face Detection Based on Multi-Block LBP Representation , 2007, ICB.

[47]  Rajesh P. N. Rao,et al.  A Bilinear Model for Sparse Coding , 2002, NIPS.

[48]  Bernt Schiele,et al.  A Performance Evaluation of Single and Multi-feature People Detection , 2008, DAGM-Symposium.

[49]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[50]  George Loizou,et al.  Computer vision and pattern recognition , 2007, Int. J. Comput. Math..

[51]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[53]  Larry S. Davis,et al.  Human detection using partial least squares analysis , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[54]  Shaogang Gong,et al.  Facial expression recognition based on Local Binary Patterns: A comprehensive study , 2009, Image Vis. Comput..

[55]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[56]  Fatih Murat Porikli,et al.  Integral histogram: a fast way to extract histograms in Cartesian spaces , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[57]  Marko Heikkilä,et al.  A Texture-based Method for Detecting Moving Objects , 2004, BMVC.