Spectral and mineralogical effects of heating on CM chondrite and related asteroids

[1]  A. Davis,et al.  Samples returned from the asteroid Ryugu are similar to Ivuna-type carbonaceous meteorites , 2022, Science.

[2]  M. Mermoux,et al.  Geologically rapid aqueous mineral alteration at subfreezing temperatures in icy worlds , 2022, Nature Astronomy.

[3]  C. Pilorget,et al.  First compositional analysis of Ryugu samples by the MicrOmega hyperspectral microscope , 2021, Nature Astronomy.

[4]  C. Pilorget,et al.  Preliminary analysis of the Hayabusa2 samples returned from C-type asteroid Ryugu , 2021, Nature Astronomy.

[5]  V. Reddy,et al.  Investigating the Relationship between (3200) Phaethon and (155140) 2005 UD through Telescopic and Laboratory Studies , 2021, The Planetary Science Journal.

[6]  D. Reuter,et al.  Weak spectral features on (101995) Bennu from the OSIRIS-REx Visible and InfraRed Spectrometer , 2020, Astronomy & Astrophysics.

[7]  E. Cloutis,et al.  Phase reddening on asteroid Bennu from visible and near-infrared spectroscopy , 2020, Astronomy & Astrophysics.

[8]  D. DellaGiustina,et al.  In situ evidence of thermally induced rock breakdown widespread on Bennu’s surface , 2020, Nature Communications.

[9]  Makoto Yoshikawa,et al.  Hayabusa2 mission status: Landing, roving and cratering on asteroid Ryugu , 2020, Acta Astronautica.

[10]  M. Granvik,et al.  New Evidence for a Physical Link between Asteroids (155140) 2005 UD and (3200) Phaethon , 2020, The Planetary Science Journal.

[11]  B. Schmitt,et al.  Style and intensity of hydration among C-complex asteroids: A comparison to desiccated carbonaceous chondrites , 2020, 2004.09872.

[12]  S. Kamali,et al.  Quantitative determination of magnetite and maghemite in iron oxide nanoparticles using Mössbauer spectroscopy , 2019, SN Applied Sciences.

[13]  H. Busemann,et al.  The Yamato-type (CY) carbonaceous chondrite group: Analogues for the surface of asteroid Ryugu? , 2019, Geochemistry.

[14]  M. Yamada,et al.  The surface composition of asteroid 162173 Ryugu from Hayabusa2 near-infrared spectroscopy , 2019, Science.

[15]  R. Jaumann,et al.  Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top–shaped rubble pile , 2019, Science.

[16]  W. Bottke,et al.  DISRUPTION AND REACCUMULATION AS THE POSSIBLE ORIGIN OF RYUGU AND BENNU TOP SHAPES , 2019 .

[17]  M. K. Crombie,et al.  Evidence for widespread hydrated minerals on asteroid (101955) Bennu , 2019, Nature Astronomy.

[18]  M. K. Crombie,et al.  The Unexpected Surface of Asteroid (101955) Bennu , 2019, Nature.

[19]  A. Verchovsky,et al.  The alteration history of the Jbilet Winselwan CM carbonaceous chondrite: An analog for C‐type asteroid sample return , 2018, Meteoritics & Planetary Science.

[20]  J. Zipfel,et al.  Composition, petrology, and chondrule‐matrix complementarity of the recently discovered Jbilet Winselwan CM2 chondrite , 2018, Meteoritics & Planetary Science.

[21]  E. Cloutis,et al.  Ultraviolet spectral reflectance of carbonaceous materials , 2018, Icarus.

[22]  S. Steinbach,et al.  Fe isotope composition of bulk chondrules from Murchison (CM2): Constraints for parent body alteration, nebula processes and chondrule-matrix complementarity , 2018 .

[23]  M. K. Crombie,et al.  OSIRIS-REx: Sample Return from Asteroid (101955) Bennu , 2017, Space Science Reviews.

[24]  S. Berensmeier,et al.  Oxidation of magnetite nanoparticles: impact on surface and crystal properties , 2017 .

[25]  Everett Shock,et al.  Carbonaceous Chondrite Meteorites: the Chronicle of a Potential Evolutionary Path between Stars and Life , 2017, Origins of Life and Evolution of Biospheres.

[26]  Richard P. Binzel,et al.  The geophysical environment of Bennu , 2016 .

[27]  Jonathan Gal-Edd,et al.  The OSIRIS-REx asteroid sample return mission , 2015, 2015 IEEE Aerospace Conference.

[28]  D. Vokrouhlický,et al.  Orbit and bulk density of the OSIRIS-REx target Asteroid (101955) Bennu , 2014, 1402.5573.

[29]  M. Zolensky,et al.  Petrographic, chemical and spectroscopic evidence for thermal metamorphism in carbonaceous chondrites I: CI and CM chondrites , 2014 .

[30]  Y. Tsuda,et al.  System design of the Hayabusa 2—Asteroid sample return mission to 1999 JU3 , 2013 .

[31]  Harry Y. McSween,et al.  Nature and degree of aqueous alteration in CM and CI carbonaceous chondrites , 2013 .

[32]  O. Mosin,et al.  The structure and composition of natural carbonaceous fullerene containing mineral shungite , 2013 .

[33]  Paul Mann,et al.  Spectral reflectance properties of carbonaceous chondrites: 1. CI chondrites , 2012 .

[34]  M. Gaffey,et al.  Spectral reflectance properties of carbonaceous chondrites 4: Aqueously altered and thermally metamorphosed meteorites , 2012 .

[35]  A. Gualtieri,et al.  The dehydroxylation of serpentine group minerals , 2012 .

[36]  P. Bland,et al.  Modal mineralogy of CM chondrites by X-ray diffraction (PSD-XRD): Part 2. Degree, nature and settings of aqueous alteration , 2011 .

[37]  P. Michel,et al.  TEMPERATURE HISTORY AND DYNAMICAL EVOLUTION OF (101955) 1999 RQ 36: A POTENTIAL TARGET FOR SAMPLE RETURN FROM A PRIMITIVE ASTEROID , 2011 .

[38]  M. Vázquez,et al.  Magnetic Iron Oxide Nanoparticles in 10−40 nm Range: Composition in Terms of Magnetite/Maghemite Ratio and Effect on the Magnetic Properties , 2011 .

[39]  P. Michel,et al.  Orbital and thermal evolutions of four potential targets for a sample return space mission to a primitive near-Earth asteroid , 2010 .

[40]  G. Cody,et al.  Deuterium enrichments in chondritic macromolecular material—Implications for the origin and evolution of organics, water and asteroids , 2010 .

[41]  B. Schmitt,et al.  Hydrous mineralogy of CM and CI chondrites from infrared spectroscopy and their relationship with low albedo asteroids , 2010 .

[42]  R. Okazaki,et al.  Thermal Metamorphism of CM Carbonaceous Chondrites: Effects on Phyllosilicate Mineralogy and Presolar Grain Abundances , 2006 .

[43]  Tomoki Nakamura Post-hydration thermal metamorphism of carbonaceous chondrites , 2005 .

[44]  A. Rubin What heated the asteroids? , 2005, Scientific American.

[45]  M. Sephton,et al.  Organic compounds in carbonaceous meteorites. , 2002, Natural product reports.

[46]  M. Zolensky,et al.  Petrographic, Chemical and Spectroscopic Data on Thermally Metamorphosed Carbonaceous Chondrites , 2002 .

[47]  H. McSween,et al.  Thermal Evolution Models of Asteroids , 2002 .

[48]  Bruce Hapke,et al.  Space weathering from Mercury to the asteroid belt , 2001 .

[49]  M. Zolensky,et al.  UV-Vis-NIR absorption features of heated phyllosilicates as remote-sensing clues of thermal histories of primitive asteroids , 1999 .

[50]  W. Bourcier,et al.  Constraints on the anhydrous precursor mineralogy of fine‐grained materials in CM carbonaceous chondrites , 1998 .

[51]  M. Zolensky,et al.  Thermal metamorphism of the C, G, B, and F asteroids seen from the 0.7 μm, 3 μm, and UV absorption strengths in comparison with carbonaceous chondrites , 1996 .

[52]  A. Rubin Petrologic evidence for collisional heating of chondritic asteroids , 1995 .

[53]  M. Zolensky,et al.  Infrared diffuse reflectance spectra of carbonaceous chondrites: Amount of hydrous minerals , 1994 .

[54]  M. Zolensky,et al.  Possible thermal metamorphism on the C, G, B, and F asteroids detected from their reflectance spectra in comparison with carbonaceous chondrites , 1994 .

[55]  M. Zolensky,et al.  Evidence of Thermal Metamorphism on the C, G, B, and F Asteroids , 1993, Science.

[56]  J. Breton,et al.  The vis/UV spectrum of coals and the interstellar extinction curve , 1993 .

[57]  F. Fanale,et al.  Simulation of possible regolith optical alteration effects on carbonaceous chondrite meteorites , 1993 .

[58]  Akai Junji Mineralogical evidence of heating events in Antarctic carbonaceous chondrites, Y-86720 and Y-82162 , 1990 .

[59]  R. Morris,et al.  Spectral and other physicochemical properties of submicron powders of hematite (alpha-Fe2O3), maghemite (gamma-Fe2O3), magnetite (Fe3O4), goethite (alpha-FeOOH), and lepidocrocite (gamma-FeOOH). , 1985, Journal of geophysical research.

[60]  H. McSween Are carbonaceous chondrites primitive or processed? A review , 1979 .

[61]  M. Lipschutz,et al.  Thermal metamorphism of primitive meteorites. VI - Eleven trace elements in Murchison C2 chondrite heated at 400-1000 C , 1977 .

[62]  John B. Adams,et al.  Visible and near‐infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system , 1974 .

[63]  Torrence V. Johnson,et al.  Optical properties of carbonaceous chondrites and their relationship to asteroids , 1973 .

[64]  L. Fuchs,et al.  Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite , 1973 .

[65]  W. D. Ehmann,et al.  CHEMICAL ANALYSES OF THE MURCHISON AND LOST CITY METEORITES , 1970 .