Hierarchically structured ZnO nanorod-carbon fiber composites as ultrathin, flexible, highly sensitive triboelectric sensors

[1]  J. Sirohi,et al.  Fundamental Understanding of Piezoelectric Strain Sensors , 1999, Smart Structures.

[2]  F. Delale,et al.  A statistical model of electrical resistance of carbon fiber reinforced composites under tensile loading , 2008 .

[3]  K. Schulte,et al.  Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load , 2009 .

[4]  P. Ajayan,et al.  Flexible piezoelectric ZnO-paper nanocomposite strain sensor. , 2010, Small.

[5]  F. Chang,et al.  Flexible strain sensors fabricated with carbon nano-tube and carbon nano-fiber composite thin films , 2010 .

[6]  P. Poulin,et al.  Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers , 2010 .

[7]  Chun-Liang Lin,et al.  A Polymer-Based Capacitive Sensing Array for Normal and Shear Force Measurement , 2010, Sensors.

[8]  L. Gallimard,et al.  Optimal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm , 2010 .

[9]  N. Shinya,et al.  Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. , 2011, Physical chemistry chemical physics : PCCP.

[10]  F. Choy,et al.  Damage detection of carbon fiber reinforced polymer composites via electrical resistance measurement , 2011 .

[11]  A practical structural health monitoring system for carbon fibre reinforced composite based on electrical resistance , 2012 .

[12]  J. Kenny,et al.  The role of irreversible and reversible phenomena in the piezoresistive behavior of graphene epoxy nanocomposites applied to structural health monitoring , 2013 .

[13]  Biplab K. Deka,et al.  Processing and mechanical characterization of ZnO/polyester woven carbon-fiber composites with different ZnO concentrations , 2013 .

[14]  Benjamin C. K. Tee,et al.  Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring , 2013, Nature Communications.

[15]  Yonggang Huang,et al.  High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene) , 2013, Nature Communications.

[16]  Sida Luo,et al.  SWCNT/Graphite Nanoplatelet Hybrid Thin Films for Self‐Temperature‐Compensated, Highly Sensitive, and Extensible Piezoresistive Sensors , 2013, Advanced materials.

[17]  Tae Yun Kim,et al.  Transparent Flexible Graphene Triboelectric Nanogenerators , 2014, Advanced materials.

[18]  M. Vosgueritchian,et al.  Stretchable Energy‐Harvesting Tactile Electronic Skin Capable of Differentiating Multiple Mechanical Stimuli Modes , 2014, Advanced materials.

[19]  J. Yu,et al.  PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays. , 2014, ACS applied materials & interfaces.

[20]  Zhong Lin Wang,et al.  Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics. , 2015, ACS nano.

[21]  M. Al-Haik,et al.  Investigating the energy harvesting capabilities of a hybrid ZnO nanowires/carbon fiber polymer composite beam , 2015, Nanotechnology.

[22]  G. Lindbergh,et al.  Piezo-Electrochemical Energy Harvesting with Lithium-Intercalating Carbon Fibers. , 2015, ACS applied materials & interfaces.

[23]  Pedro Araújo,et al.  Carbon Fiber Epoxy Composites for Both Strengthening and Health Monitoring of Structures , 2015, Sensors.

[24]  L. Mishnaevsky,et al.  Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of CNT distribution on shearing strength , 2016 .

[25]  Zhong Lin Wang,et al.  Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator. , 2016, ACS nano.

[26]  M. Willander,et al.  Lightweight Triboelectric Nanogenerator for Energy Harvesting and Sensing Tiny Mechanical Motion , 2016 .

[27]  H. Park,et al.  Electrical thermal heating and piezoresistive characteristics of hybrid CuO–woven carbon fiber/vinyl ester composite laminates , 2016 .

[28]  Zhong Lin Wang,et al.  Effective energy storage from a triboelectric nanogenerator , 2016, Nature Communications.

[29]  Zhengguang Zou,et al.  Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs. , 2016, ACS applied materials & interfaces.

[30]  Zhong Lin Wang,et al.  Self-Powered Triboelectric Micro Liquid/Gas Flow Sensor for Microfluidics. , 2016, ACS nano.

[31]  Pooi See Lee,et al.  Enhanced Piezoelectric Energy Harvesting Performance of Flexible PVDF-TrFE Bilayer Films with Graphene Oxide. , 2016, ACS applied materials & interfaces.

[32]  C. Bowen,et al.  Graphene Ink Laminate Structures on Poly(vinylidene difluoride) (PVDF) for Pyroelectric Thermal Energy Harvesting and Waste Heat Recovery. , 2017, ACS applied materials & interfaces.

[33]  Zhong Lin Wang,et al.  Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing , 2018, Nature Communications.

[34]  Dong Hyun Kim,et al.  Triboelectric nanogenerators with gold-thin-film-coated conductive textile as floating electrode for scavenging wind energy , 2017, Nano Research.

[35]  P. K. Ghosh,et al.  Thermo-mechanical and anti-corrosive properties of MWCNT/epoxy nanocomposite fabricated by innovative dispersion technique , 2017 .

[36]  A. Soon,et al.  Designing Two-Dimensional Dirac Heterointerfaces of Few-Layer Graphene and Tetradymite-Type Sb2Te3 for Thermoelectric Applications. , 2017, ACS applied materials & interfaces.

[37]  Zhong Lin Wang,et al.  Self-Sterilized Flexible Single-Electrode Triboelectric Nanogenerator for Energy Harvesting and Dynamic Force Sensing. , 2017, ACS nano.

[38]  Ning Wang,et al.  From Dual-Mode Triboelectric Nanogenerator to Smart Tactile Sensor: A Multiplexing Design. , 2017, ACS nano.

[39]  Zhong Lin Wang,et al.  Self-Powered Acceleration Sensor Based on Liquid Metal Triboelectric Nanogenerator for Vibration Monitoring. , 2017, ACS Nano.

[40]  F. Pan,et al.  Graphene Quantum Dots Embedded in Bi2Te3 Nanosheets To Enhance Thermoelectric Performance. , 2017, ACS applied materials & interfaces.

[41]  M. Willander,et al.  An Ultrathin Flexible Single‐Electrode Triboelectric‐Nanogenerator for Mechanical Energy Harvesting and Instantaneous Force Sensing , 2017 .

[42]  Byeong Wan An,et al.  Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature , 2018, Nature Communications.

[43]  J. Ha,et al.  Fabrication of High-Sensitivity Skin-Attachable Temperature Sensors with Bioinspired Microstructured Adhesive. , 2018, ACS applied materials & interfaces.

[44]  Jonghwa Park,et al.  Flexible Ferroelectric Sensors with Ultrahigh Pressure Sensitivity and Linear Response over Exceptionally Broad Pressure Range. , 2018, ACS nano.

[45]  Youngoh Lee,et al.  Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors. , 2018, ACS nano.

[46]  Meifang Zhu,et al.  Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber , 2018 .