Intelligent GI Analysis

Geographic Information Analysis (GIA) embraces a whole cluster of techniques and models which apply formal, usually mathematical and statistical, structures to systems in which the prime variables of interest vary significantly across space. GIA is currently entering a period of rapid change leading to what may be termed intelligent GIA. The driving forces are a combination of large amounts of digital spatial data due to the GIS data revolution, the availability of attractive softcomputing tools, the rapid growth in computational power, and the new emphasis on exploratory data analysis and modelling.

[1]  Stan Openshaw,et al.  A genetic programming approach to building new spatial models relevant to GIS , 1997 .

[2]  D. Fogel ASYMPTOTIC CONVERGENCE PROPERTIES OF GENETIC ALGORITHMS AND EVOLUTIONARY PROGRAMMING: ANALYSIS AND EXPERIMENTS , 1994 .

[3]  Manfred M. Fischer,et al.  Expert Systems and Artificial Neural Networks for Spatial Analysis and Modelling. Essential Components for Knowledge-Based Geographical Information Systems , 1992 .

[4]  Manfred M. Fischer,et al.  Recent Developments in Spatial Analysis , 1997 .

[5]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[6]  Stan Openshaw,et al.  A framework for research on spatial analysis relevant to geo-statistical information systems in Euro , 1995 .

[7]  Yee Leung,et al.  Feedforward Neural Network Models for Spatial Data Classification and Rule Learning , 1997 .

[8]  Stan Openshaw Developing Automated and Smart Spatial Pattern Exploration Tools for Geographical Information Systems Applications , 1995 .

[9]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[10]  Stan Openshaw,et al.  Artificial intelligence in geography , 1997 .

[11]  Kenneth A. De Jong,et al.  An Analysis of Multi-Point Crossover , 1990, FOGA.

[12]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[13]  Bart Kosko,et al.  Neural networks and fuzzy systems , 1998 .

[14]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[16]  Stan Openshaw Modelling spatial interaction using a neural net , 1993 .

[17]  Manfred M. Fischer,et al.  Computational Neural Networks: A New Paradigm for Spatial Analysis , 1998 .

[18]  Zarine P. Kemp,et al.  Innovations in GIS 4 , 1997 .

[19]  Stan Openshaw,et al.  Census users' handbook , 1995 .

[20]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[21]  Jacek M. Zurada,et al.  Computational Intelligence: Imitating Life , 1994 .

[22]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[23]  Manfred M. Fischer,et al.  Fuzzy ARTMAP — A Neural Classifier for Multispectral Image Classification , 1997 .

[24]  Manfred M. Fischer,et al.  Neural net based interregional telephone traffic models , 1993, Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan).

[25]  Peter J. Angeline,et al.  Evolution Revolution: An Introduction to the Special Track on Genetic and Evolutionary Programming , 1995, IEEE Expert.

[26]  Graeme G. Wilkinson,et al.  Neurocomputing for Earth Observation — Recent Developments and Future Challenges , 1997 .

[27]  M.H. Hassoun,et al.  Fundamentals of Artificial Neural Networks , 1996, Proceedings of the IEEE.

[28]  Stan Openshaw,et al.  Building an Automated Modeling System to Explore a Universe of Spatial Interaction Models , 2010 .

[29]  Manfred M. Fischer,et al.  Evaluation of Neural Pattern Classifiers for a Remote Sensing Application , 1995 .

[30]  Stan Openshaw,et al.  Building Fuzzy Spatial Interaction Models , 1997 .

[31]  Philip D. Wasserman,et al.  Advanced methods in neural computing , 1993, VNR computer library.

[32]  Manfred M. Fischer,et al.  A Genetic-Algorithms Based Evolutionary Computational Neural Network for Modelling Spatial Interaction Data , 1998 .

[33]  Günter Rudolph,et al.  Convergence analysis of canonical genetic algorithms , 1994, IEEE Trans. Neural Networks.

[34]  Lawrence J. Fogel,et al.  Biotechnology: Concepts and Applications , 1964 .

[35]  Manfred M. Fischer,et al.  ARTIFICIAL NEURAL NETWORKS: A NEW APPROACH TO MODELING INTERREGIONAL TELECOMMUNICATION FLOWS* , 1994 .

[36]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[37]  Manfred M. Fischer,et al.  Geographic Information Systems, Spatial Modelling and Policy Evaluation , 1993 .

[38]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[39]  Manfred M. Fischer,et al.  Recent developments in spatial analysis : spatial statistics, behavioural modelling, and computational intelligence , 1997 .

[40]  Manfred M. Fischer,et al.  A Gobal Search Procedure forParameter Estimation inNeural Spatial Interaction Modelling , 1998 .

[41]  Mark Birkin,et al.  The Use of Parallel Computers to Solve Nonlinear Spatial Optimisation Problems: An Application to Network Planning , 1995 .

[42]  Manfred M. Fischer Fundamentals in Neurocomputing , 1994 .

[43]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[44]  Manfred M. Fischer,et al.  A genetic-algorithms based evolutionary computational neural network for modelling spatial interaction dataNeural network for modelling spatial interaction data , 1998 .