Levy Processes: Hitting time, overshoot and undershoot - part I: Functional equations

Let (X_t, t >=0) be a Levy process started at 0, with Levy measure nu, and T_x the first hitting time of level x>0: T_x := inf{t>=0; X_t>x}. Let F(theta,mu,rho,.) be the joint Laplace transform of (T_x, K_x, L_x): F(theta,mu,rho,x) := E (e^{-theta T_x - mu K_x - rho L_x} 1_{T_x =0, mu>=0, rho>=0, x>0, K_x := X_{T_x} - x and L_x := x - X_{T_{x^-}}. If nu(R) 0, then we prove that F(theta,mu,rho,.) is the unique solution of an integral equation and has a subexponential decay at infinity when theta>0 or theta=0 and E(X_1) 0, then the x-Laplace transform of F(theta,mu,rho,.) satisfies some kind of integral equation. This allows us to prove that F(theta,mu,rho,.) is a solution to a second integral equation.

[1]  Cary Chi-Liang Tsai,et al.  Collective Risk Theory , 2006 .

[2]  B. Roynette,et al.  Levy processes: Hitting time, overshoot and undershoot II - Asymptotic behaviour , 2005, math/0507193.

[3]  Miljenko Huzak,et al.  Ruin probabilities and decompositions for general perturbed risk processes , 2004, math/0407125.

[4]  Agnès Volpi Processus associés à l'équation de diffusion rapide : étude asymptotique du temps de ruine et de l'overshoot , 2003 .

[5]  S. Kou,et al.  FIRST PASSAGE TIMES OF A JUMP DIFFUSION PROCESS , 2002 .

[6]  R. Norberg Ruin problems with assets and liabilities of diffusion type , 1999 .

[7]  T. Rolski Stochastic Processes for Insurance and Finance , 1999 .

[8]  Hans U. Gerber,et al.  The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin , 1997 .

[9]  P. Vallois,et al.  Level crossing times for certain processes without positive jumps , 1997 .

[10]  Jean Bertoin,et al.  Cramér's estimate for Lévy processes , 1994 .

[11]  Anders Martin-Löf,et al.  On the mathematical theory of risk , 1994 .

[12]  Howard R. Waters,et al.  The Probability and Severity of Ruin in Finite and Infinite Time , 1992 .

[13]  F. Dufresne,et al.  Risk Theory with the Gamma Process , 1991, ASTIN Bulletin.

[14]  Hans U. Gerber,et al.  Risk theory for the compound Poisson process that is perturbed by diffusion , 1991 .

[15]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[16]  F. Delbaen,et al.  Inversed martingales in risk theory , 1985 .

[17]  Greg Taylor,et al.  Use of differential and integral inequalities to bound ruin and queuing probabilities , 1976 .

[18]  Hans U. Gerber,et al.  An extension of the renewal equation and its application in the collective theory of risk , 1970 .

[19]  I. Kovalenko An introduction to probability theory and its applications. Vol. II , 1968 .

[20]  W. Feller An Introduction to Probability Theory and Its Applications , 1959 .

[21]  Anatoly,et al.  CAMBRIDGE TRACTS IN MATHEMATICS , 2022 .