Structural insights into G-protein-coupled receptor allostery

[1]  M. Congreve,et al.  Structure-Based Optimization Strategies for G Protein-Coupled Receptor (GPCR) Allosteric Modulators: A Case Study from Analyses of New Metabotropic Glutamate Receptor 5 (mGlu5) X-ray Structures. , 2018, Journal of medicinal chemistry.

[2]  W. Baumeister,et al.  Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor–Gs complex , 2018, Nature.

[3]  Dahlia R. Weiss,et al.  Structure-based discovery of selective positive allosteric modulators of antagonists for the M2 muscarinic acetylcholine receptor , 2018, Proceedings of the National Academy of Sciences.

[4]  S. Yokoyama,et al.  Na+-mimicking ligands stabilize the inactive state of leukotriene B4 receptor BLT1. , 2018, Nature chemical biology.

[5]  Sudarshan Rajagopal,et al.  Biased signalling: from simple switches to allosteric microprocessors , 2018, Nature Reviews Drug Discovery.

[6]  G. Bottegoni,et al.  Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727 , 2018, Nature.

[7]  David E. Gloriam,et al.  Trends in GPCR drug discovery: new agents, targets and indications , 2017, Nature Reviews Drug Discovery.

[8]  A. Kiyatkin,et al.  EGFR Ligands Differentially Stabilize Receptor Dimers to Specify Signaling Kinetics , 2017, Cell.

[9]  Bryan L Roth,et al.  Discovery of new GPCR ligands to illuminate new biology. , 2017, Nature chemical biology.

[10]  M. Congreve,et al.  Applying Structure-Based Drug Design Approaches to Allosteric Modulators of GPCRs. , 2017, Trends in pharmacological sciences.

[11]  Naomi R. Latorraca,et al.  Mechanism of intracellular allosteric β2AR antagonist revealed by X-ray crystal structure , 2017, Nature.

[12]  Arthur Christopoulos,et al.  A kinetic view of GPCR allostery and biased agonism. , 2017, Nature chemical biology.

[13]  C. Tate,et al.  Active state structures of G protein-coupled receptors highlight the similarities and differences in the G protein and arrestin coupling interfaces. , 2017, Current opinion in structural biology.

[14]  Naomi R. Latorraca,et al.  Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors , 2017, Cell.

[15]  C. J. Hutchings,et al.  Opportunities for therapeutic antibodies directed at G-protein-coupled receptors , 2017, Nature Reviews Drug Discovery.

[16]  Shan Jiang,et al.  Crystal structures of agonist-bound human cannabinoid receptor CB1 , 2017, Nature.

[17]  R. Abagyan,et al.  Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV , 2017, Immunity.

[18]  Brian T DeVree,et al.  Purification of family B G protein-coupled receptors using nanodiscs: Application to human glucagon-like peptide-1 receptor , 2017, PloS one.

[19]  Chris de Graaf,et al.  Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators , 2017, Nature.

[20]  Sujata Sharma,et al.  Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40 , 2017, Nature Structural &Molecular Biology.

[21]  T. S. Kobilka,et al.  Cryo-EM structure of the activated GLP-1 receptor in complex with G protein , 2017, Nature.

[22]  Benjamin T. Porebski,et al.  Key determinants of selective binding and activation by the monocyte chemoattractant proteins at the chemokine receptor CCR2 , 2017, Science Signaling.

[23]  Shuji Akiyama,et al.  Structural basis for perception of diverse chemical substances by T1r taste receptors , 2017, Nature Communications.

[24]  P. Griffin,et al.  Molecular assembly of rhodopsin with G protein-coupled receptor kinases , 2017, Cell Research.

[25]  M. Madan Babu,et al.  Selectivity determinants of GPCR–G-protein binding , 2017, Nature.

[26]  Patrik Johansson,et al.  Structural insight into allosteric modulation of protease-activated receptor 2 , 2017, Nature.

[27]  Jonathan A. Javitch,et al.  Single-molecule analysis of ligand efficacy in β2AR-G protein activation , 2017, Nature.

[28]  R. Dror,et al.  Structural and Functional Analysis of a β2-Adrenergic Receptor Complex with GRK5 , 2017, Cell.

[29]  Hualiang Jiang,et al.  Structure of the full-length glucagon class B G protein-coupled receptor , 2017, Nature.

[30]  Arthur Christopoulos,et al.  Phase-plate cryo-EM structure of a class B GPCR-G protein complex , 2017, Nature.

[31]  S. Sligar,et al.  Conformational equilibria of light-activated rhodopsin in nanodiscs , 2017, Proceedings of the National Academy of Sciences.

[32]  B. Farran An update on the physiological and therapeutic relevance of GPCR oligomers , 2017, Pharmacological research.

[33]  D. E. Nichols,et al.  Crystal Structure of an LSD-Bound Human Serotonin Receptor , 2017, Cell.

[34]  J. Steyaert,et al.  Nanobodies to Study G Protein-Coupled Receptor Structure and Function. , 2017, Annual review of pharmacology and toxicology.

[35]  C. J. Hutchings,et al.  Opportunities for therapeutic antibodies directed at G-protein-coupled receptors , 2017, Nature Reviews Drug Discovery.

[36]  Ali Jazayeri,et al.  Intracellular allosteric antagonism of the CCR9 receptor , 2016, Nature.

[37]  K. Wüthrich,et al.  β2-Adrenergic Receptor Conformational Response to Fusion Protein in the Third Intracellular Loop. , 2016, Structure.

[38]  J. Pin,et al.  Organization and functions of mGlu and GABAB receptor complexes , 2016, Nature.

[39]  D. Müller,et al.  Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol , 2016, eLife.

[40]  Ruben Abagyan,et al.  Structure of CC Chemokine Receptor 2 with Orthosteric and Allosteric Antagonists , 2016, Nature.

[41]  P. Sexton,et al.  Ligand-Dependent Modulation of G Protein Conformation Alters Drug Efficacy , 2016, Cell.

[42]  C. Siebold,et al.  Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling , 2016, eLife.

[43]  Tomohiro Nishizawa,et al.  Activation mechanism of endothelin ETB receptor by endothelin-1 , 2016, Nature.

[44]  G. Gimpl Interaction of G protein coupled receptors and cholesterol. , 2016, Chemistry and physics of lipids.

[45]  J. Changeux,et al.  Allosteric Modulation as a Unifying Mechanism for Receptor Function and Regulation , 2016, Cell.

[46]  A. Salic,et al.  Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling , 2016, Cell.

[47]  Ryan T. Strachan,et al.  GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling , 2016, Cell.

[48]  L. Mosyak,et al.  Structural mechanism of ligand activation in human calcium-sensing receptor , 2016, eLife.

[49]  J. Tesmer Hitchhiking on the heptahelical highway: structure and function of 7TM receptor complexes , 2016, Nature Reviews Molecular Cell Biology.

[50]  S. Rasmussen,et al.  Allosteric coupling from G protein to the agonist binding pocket in GPCRs , 2016, Nature.

[51]  M. Sansom,et al.  Structural basis for Smoothened regulation by its extracellular domains , 2016, Nature.

[52]  Aashish Manglik,et al.  Allosteric Nanobodies Reveal the Dynamic Range and Diverse Mechanisms of GPCR Activation , 2016, Nature.

[53]  Ryan T. Strachan,et al.  Conformationally Selective RNA Aptamers Allosterically Modulate the β2-Adrenoceptor , 2016, Nature chemical biology.

[54]  S. P. Andrews,et al.  Extra-helical binding site of a glucagon receptor antagonist , 2016, Nature.

[55]  M. Zimmer,et al.  Activation of the A2A adenosine G-protein-coupled receptor by conformational selection , 2016, Nature.

[56]  Anthony L. Schilmiller,et al.  Structural basis for regulation of human calcium-sensing receptor by magnesium ions and an unexpected tryptophan derivative co-agonist , 2016, Science Advances.

[57]  S. Nuber,et al.  β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle , 2016, Nature.

[58]  Arthur Christopoulos,et al.  The role of kinetic context in apparent biased agonism at GPCRs , 2016, Nature Communications.

[59]  Y. Peterson,et al.  The conformational signature of arrestin3 predicts its trafficking and signaling functions , 2016, Nature.

[60]  A. Pioszak,et al.  Receptor Activity-Modifying Proteins (RAMPs): New Insights and Roles. , 2016, Annual review of pharmacology and toxicology.

[61]  P. Gurbel,et al.  Cell-Penetrating Pepducin Therapy Targeting PAR1 in Subjects With Coronary Artery Disease , 2016, Arteriosclerosis, thrombosis, and vascular biology.

[62]  J. Changeux,et al.  Biased Allostery. , 2016, Biophysical journal.

[63]  A. Leslie,et al.  Ligand occupancy in crystal structure of β1-adrenergic G protein–coupled receptor , 2015, Nature Structural &Molecular Biology.

[64]  Ali Jazayeri,et al.  Fragment and Structure-Based Drug Discovery for a Class C GPCR: Discovery of the mGlu5 Negative Allosteric Modulator HTL14242 (3-Chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). , 2015, Journal of medicinal chemistry.

[65]  T. S. Kobilka,et al.  Structural Insights into the Dynamic Process of β2-Adrenergic Receptor Signaling , 2015, Cell.

[66]  Arthur Christopoulos,et al.  Endogenous Allosteric Modulators of G Protein–Coupled Receptors , 2015, The Journal of Pharmacology and Experimental Therapeutics.

[67]  Hualiang Jiang,et al.  Two disparate ligand-binding sites in the human P2Y1 receptor , 2015, Nature.

[68]  Garth J. Williams,et al.  Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser , 2014, Nature.

[69]  J. Changeux,et al.  International Union of Basic and Clinical Pharmacology. XC. Multisite Pharmacology: Recommendations for the Nomenclature of Receptor Allosterism and Allosteric Ligands , 2014, Pharmacological Reviews.

[70]  Krzysztof Palczewski,et al.  Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway , 2014, Nature Communications.

[71]  Anthony Ivetac,et al.  High-resolution structure of the human GPR40 receptor bound to allosteric agonist TAK-875 , 2014, Nature.

[72]  A. Mathiowetz,et al.  A potentiator of orthosteric ligand activity at GLP-1R acts via covalent modification. , 2014, Nature chemical biology.

[73]  A. Doré,et al.  Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain , 2014, Nature.

[74]  Vadim Cherezov,et al.  Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs , 2014, Nature Communications.

[75]  Benjamin G Tehan,et al.  Unifying family A GPCR theories of activation. , 2014, Pharmacology & therapeutics.

[76]  J. Qian,et al.  Visualization of arrestin recruitment by a G Protein-Coupled Receptor , 2014, Nature.

[77]  Vadim Cherezov,et al.  Allosteric sodium in class A GPCR signaling. , 2014, Trends in biochemical sciences.

[78]  Hualiang Jiang,et al.  Agonist-bound structure of the human P2Y12 receptor , 2014, Nature.

[79]  Jens Meiler,et al.  Structure of a Class C GPCR Metabotropic Glutamate Receptor 1 Bound to an Allosteric Modulator , 2014, Science.

[80]  Gebhard F. X. Schertler,et al.  The 2.1 Å Resolution Structure of Cyanopindolol-Bound β1-Adrenoceptor Identifies an Intramembrane Na+ Ion that Stabilises the Ligand-Free Receptor , 2014, PloS one.

[81]  J. Wess,et al.  Activation and allosteric modulation of a muscarinic acetylcholine receptor , 2013, Nature.

[82]  Albert C. Pan,et al.  Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs , 2013, Nature.

[83]  Hualiang Jiang,et al.  Structure of the CCR5 Chemokine Receptor–HIV Entry Inhibitor Maraviroc Complex , 2013, Science.

[84]  Ali Jazayeri,et al.  Structure of class B GPCR corticotropin-releasing factor receptor 1 , 2013, Nature.

[85]  R. Stevens,et al.  Structural Features for Functional Selectivity at Serotonin Receptors , 2013, Science.

[86]  Hualiang Jiang,et al.  Structural Basis for Molecular Recognition at Serotonin Receptors , 2013, Science.

[87]  P. Scheerer,et al.  Crystal structure of pre-activated arrestin p44 , 2013, Nature.

[88]  A. Kruse,et al.  Structure of active β-arrestin1 bound to a G protein-coupled receptor phosphopeptide , 2013, Nature.

[89]  Arthur Christopoulos,et al.  Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations , 2013, Proceedings of the National Academy of Sciences.

[90]  Jianyun Huang,et al.  Crystal Structure of Oligomeric β1-Adrenergic G Protein- Coupled Receptors in Ligand-Free Basal State , 2013, Nature Structural &Molecular Biology.

[91]  R. Stevens,et al.  Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions , 2012, Science.

[92]  Christopher G. Tate,et al.  Crystal Structures of a Stabilized β1-Adrenoceptor Bound to the Biased Agonists Bucindolol and Carvedilol , 2012, Structure.

[93]  S. Iwata,et al.  G protein-coupled receptor inactivation by an allosteric inverse-agonist antibody , 2011, Nature.

[94]  A. Mushegian,et al.  G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. , 2012, Pharmacology & therapeutics.

[95]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[96]  Oliver P. Ernst,et al.  Crystal structure of metarhodopsin II , 2011, Nature.

[97]  P. Sexton,et al.  Importance of lipid-exposed residues in transmembrane segment four for family B calcitonin receptor homo-dimerization , 2010, Regulatory Peptides.

[98]  Vadim Cherezov,et al.  A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. , 2008, Structure.

[99]  R. Stevens,et al.  High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor , 2007, Science.

[100]  Richard N. Zare,et al.  A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein , 2007, Proceedings of the National Academy of Sciences.

[101]  R. Lefkowitz,et al.  Functional antagonism of different G protein-coupled receptor kinases for beta-arrestin-mediated angiotensin II receptor signaling. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[102]  V. Gurevich,et al.  The molecular acrobatics of arrestin activation. , 2004, Trends in pharmacological sciences.

[103]  J L Benovic,et al.  Agonist-Receptor-Arrestin, an Alternative Ternary Complex with High Agonist Affinity* , 1997, The Journal of Biological Chemistry.

[104]  R. Lefkowitz,et al.  A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. , 1980, The Journal of biological chemistry.

[105]  R. Lefkowitz,et al.  A quantitative analysis of beta-adrenergic receptor interactions: resolution of high and low affinity states of the receptor by computer modeling of ligand binding data. , 1980, Molecular pharmacology.

[106]  M. Maguire,et al.  An agonist-specific effect of guanine nucleotides on binding to the beta adrenergic receptor. , 1976, Molecular pharmacology.

[107]  S. Snyder,et al.  Properties of opiate-receptor binding in rat brain. , 1973, Proceedings of the National Academy of Sciences of the United States of America.