Improved Parallel Algorithms for Spanners and Hopsets

We use exponential start time clustering to design faster parallel graph algorithms involving distances. Previous algorithms usually rely on graph decomposition routines with strict restrictions on the diameters of the decomposed pieces. We weaken these bounds in favor of stronger local probabilistic guarantees. This allows more direct analyses of the overall process, giving: Linear work parallel algorithms that construct spanners with O(k) stretch and size O(n1+1/k) in unweighted graphs, and size O(n1+1/k log k) in weighted graphs. Hopsets that lead to the first parallel algorithm for approximating shortest paths in undirected graphs with O(m poly log n) work.

[1]  Mikkel Thorup,et al.  Approximate distance oracles , 2005, J. ACM.

[2]  Edith Cohen Fast Algorithms for Constructing t-Spanners and Paths with Stretch t , 1998, SIAM J. Comput..

[3]  Shang-Hua Teng,et al.  Spectral sparsification of graphs: theory and algorithms , 2013, CACM.

[4]  Mihalis Yannakakis,et al.  High-Probability Parallel Transitive-Closure Algorithms , 1991, SIAM J. Comput..

[5]  Mihalis Yannakakis,et al.  High-probability parallel transitive closure algorithms , 1990, SPAA '90.

[6]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[7]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[8]  Philip N. Klein,et al.  A Randomized Parallel Algorithm for Single-Source Shortest Paths , 1997, J. Algorithms.

[9]  Mikkel Thorup,et al.  Deterministic Constructions of Approximate Distance Oracles and Spanners , 2005, ICALP.

[10]  Jakub W. Pachocki,et al.  Stretching Stretch , 2014, ArXiv.

[11]  Giri Narasimhan,et al.  Fast algorithms for constructing t-spanners and paths with stretch t , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[12]  Baruch Awerbuch,et al.  Complexity of network synchronization , 1985, JACM.

[13]  Thomas H. Spencer,et al.  Time-Work Tradeoffs of the Single-Source Shortest Paths Problem , 1999, J. Algorithms.

[14]  Seth Pettie Distributed algorithms for ultrasparse spanners and linear size skeletons , 2008, PODC '08.

[15]  Kurt Mehlhorn,et al.  Additive spanners and (α, β)-spanners , 2010, TALG.

[16]  Guy E. Blelloch,et al.  A simple and practical linear-work parallel algorithm for connectivity , 2014, SPAA.

[17]  Guy E. Blelloch,et al.  Near linear-work parallel SDD solvers, low-diameter decomposition, and low-stretch subgraphs , 2011, SPAA '11.

[18]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[19]  Kurt Mehlhorn,et al.  New constructions of (α, β)-spanners and purely additive spanners , 2005, SODA '05.

[20]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[21]  Bilel Derbel,et al.  On the locality of distributed sparse spanner construction , 2008, PODC '08.

[22]  Sergei Vassilvitskii,et al.  A model of computation for MapReduce , 2010, SODA '10.

[23]  Uri Zwick,et al.  All-Pairs Almost Shortest Paths , 1997, SIAM J. Comput..

[24]  E. Tronci,et al.  1996 , 1997, Affair of the Heart.

[25]  Nikhil Srivastava,et al.  Graph sparsification by effective resistances , 2008, SIAM J. Comput..

[26]  Rina Panigrahy,et al.  Spectral sparsification via random spanners , 2012, ITCS '12.

[27]  Jonathan A. Kelner,et al.  Spectral Sparsification in the Semi-streaming Setting , 2012, Theory of Computing Systems.

[28]  Uzi Vishkin,et al.  Towards a theory of nearly constant time parallel algorithms , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[29]  Noga Alon,et al.  A Graph-Theoretic Game and Its Application to the k-Server Problem , 1995, SIAM J. Comput..

[30]  Edith Cohen,et al.  Polylog-time and near-linear work approximation scheme for undirected shortest paths , 1994, STOC '94.

[31]  Satish Rao,et al.  A tight bound on approximating arbitrary metrics by tree metrics , 2003, STOC '03.

[32]  Gary L. Miller,et al.  Parallel graph decompositions using random shifts , 2013, SPAA.

[33]  Bilel Derbel,et al.  Deterministic Distributed Construction of Linear Stretch Spanners in Polylogarithmic Time , 2007, DISC.

[34]  Yair Bartal,et al.  Probabilistic approximation of metric spaces and its algorithmic applications , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[35]  Sandeep Sen,et al.  A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs , 2007, Random Struct. Algorithms.

[36]  Shang-Hua Teng,et al.  Lower-stretch spanning trees , 2004, STOC '05.

[37]  Shang-Hua Teng,et al.  Spectral Sparsification of Graphs , 2008, SIAM J. Comput..

[38]  Philip N. Klein,et al.  A parallel randomized approximation scheme for shortest paths , 1992, STOC '92.

[39]  Richard Peng,et al.  An efficient parallel solver for SDD linear systems , 2013, STOC.

[40]  Ittai Abraham,et al.  Using petal-decompositions to build a low stretch spanning tree , 2012, STOC '12.

[41]  Ioannis Koutis,et al.  Simple Parallel and Distributed Algorithms for Spectral Graph Sparsification , 2016, TOPC.

[42]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .