The quantitative behaviour of polynomial orbits on nilmanifolds

A theorem of Leibman asserts that a polynomial orbit $(g(1),g(2),g(3),\ldots)$ on a nilmanifold $G/\Gamma$ is always equidistributed in a union of closed sub-nilmanifolds of $G/\Gamma$. In this paper we give a quantitative version of Leibman's result, describing the uniform distribution properties of a finite polynomial orbit $(g(1),\ldots,g(N))$ in a nilmanifold. More specifically we show that there is a factorization $g = \epsilon g'\gamma$, where $\epsilon(n)$ is "smooth", $\gamma(n)$ is periodic and "rational", and $(g'(a),g'(a+d),\ldots,g'(a + d(l-1)))$ is uniformly distributed (up to a specified error $\delta$) inside some subnilmanifold $G'/\Gamma'$ of $G/\Gamma$, for all sufficiently dense arithmetic progressions $a,a+d,\ldots,a+d(l-1)$ inside $\{1,..,N\}$. Our bounds are uniform in $N$ and are polynomial in the error tolerance delta. In a subsequent paper we shall use this theorem to establish the Mobius and Nilsequences conjecture from our earlier paper "Linear equations in primes".

[1]  P. Hall,et al.  A Contribution to the Theory of Groups of Prime‐Power Order , 1934 .

[2]  T. Tao,et al.  The Mobius function is strongly orthogonal to nilsequences , 2008, 0807.1736.

[3]  R. Vaughan The Hardy-Littlewood Method , 1981 .

[4]  D. Morris Ratner's Theorems on Unipotent Flows , 2003, math/0310402.

[5]  Marina Ratner,et al.  Raghunathan’s topological conjecture and distributions of unipotent flows , 1991 .

[6]  Ben Green,et al.  Linear equations in primes , 2006, math/0606088.

[7]  A. Leibman,et al.  Pointwise convergence of ergodic averages for polynomial actions of $\mathbb{Z}^{d}$ by translations on a nilmanifold , 2004, Ergodic Theory and Dynamical Systems.

[8]  Ben Green,et al.  AN INVERSE THEOREM FOR THE GOWERS U4-NORM , 2005, Glasgow Mathematical Journal.

[9]  A. Leibman Polynomial Sequences in Groups , 1998 .

[10]  Ben Green,et al.  AN INVERSE THEOREM FOR THE GOWERS $U^3(G)$ NORM , 2008, Proceedings of the Edinburgh Mathematical Society.

[11]  B. Green Generalising the Hardy-Littlewood Method for Primes , 2006, math/0601211.

[12]  J. Petresco Sur les commutateurs , 1954 .

[13]  BY L. W. Green,et al.  Spectra of nilflows , 1961 .

[14]  A. Leibman Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold , 2004, Ergodic Theory and Dynamical Systems.

[15]  Bryna Kra,et al.  Uniformity seminorms on ℓ∞ and applications , 2009 .

[16]  Ben Green,et al.  QUADRATIC UNIFORMITY OF THE MOBIUS FUNCTION , 2006, math/0606087.

[17]  Akshay Venkatesh SPECTRAL THEORY OF AUTOMORPHIC FORMS: A VERY BRIEF INTRODUCTION , 2007 .

[18]  Jean Bourgain,et al.  On Triples in Arithmetic Progression , 1999 .

[19]  Bryna Kra,et al.  Multiple recurrence and nilsequences , 2005 .

[20]  Bryna Kra,et al.  Nonconventional ergodic averages and nilmanifolds , 2005 .

[21]  Tamar Ziegler,et al.  Universal characteristic factors and Furstenberg averages , 2004, math/0403212.

[22]  F. Greenleaf,et al.  Representations of nilpotent Lie groups and their applications , 1989 .

[23]  Terence Tao,et al.  Additive combinatorics , 2007, Cambridge studies in advanced mathematics.

[24]  William Parry,et al.  Dynamical systems on nilmanifolds , 1970 .

[25]  A. Leibman Polynomial mappings of groups , 2002 .

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  Bryna Kra From combinatorics to ergodic theory and back again , 2006 .

[28]  Louis Auslander,et al.  Flows on Homogeneous Spaces , 1963 .

[29]  Akshay Venkatesh,et al.  Effective equidistribution for closed orbits of semisimple groups on homogeneous spaces , 2007, 0708.4040.

[30]  A. Leibman Orbit of the diagonal in the power of a nilmanifold , 2009 .

[31]  M. Lazard,et al.  Sur les groupes nilpotents et les anneaux de Lie , 1954 .

[32]  V. G. Mkhitaryan,et al.  On a class of homogeneous spaces of compact Lie groups , 1981 .

[33]  Invariant Measures and Orbit Closures on Homogeneous Spaces for Actions of Subgroups Generated by Unipotent Elements , 2000, math/0002183.

[35]  E. Szemerédi Regular Partitions of Graphs , 1975 .