Comprehensive elucidation of crystal structures of lithium-intercalated graphite

[1]  Yutao Li,et al.  Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)‐Ion Batteries , 2017, Advanced science.

[2]  N. Yamada,et al.  Boundaries of the homologous phases in Sb–Te and Bi–Te binary alloy systems , 2015 .

[3]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[4]  Masao Yonemura,et al.  Development of SPICA, New Dedicated Neutron Powder Diffractometer for Battery Studies , 2014 .

[5]  Noboru Yamada,et al.  Crystal structures of X‐phase in the Sb–Te binary alloy system , 2013 .

[6]  N. Yamada,et al.  Structural transformation of Sb-based high-speed phase-change material. , 2012, Acta crystallographica. Section B, Structural science.

[7]  M. Marzec,et al.  Dielectric and Electrooptic Investigations of B Phases οf Banana-Shaped Thioesters , 2010 .

[8]  J. Stankowski,et al.  Graphenes Bonding Forces in Graphite , 2007 .

[9]  B. Fultz,et al.  XRD evidence of macroscopic composition inhomogeneities in the graphite–lithium electrode , 2007 .

[10]  Takeshi Yao,et al.  Analysis of layered structures of lithium–graphite intercalation compounds by one-dimensional Rietveld method , 2004 .

[11]  K. Edström,et al.  In situ X-ray diffraction studies of a graphite-based Li-ion battery negative electrode , 1996 .

[12]  A. Yamamoto Crystallography of quasiperiodic crystals , 1996 .

[13]  R. Setton,et al.  Nomenclature and terminology of graphite intercalation compounds (IUPAC Recommendations 1994) , 1994 .

[14]  M. Dresselhaus,et al.  Intercalation compounds of graphite , 1981 .

[15]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[16]  Martin Mühlbauer,et al.  Fatigue Process in Li-Ion Cells: An In Situ Combined Neutron Diffraction and Electrochemical Study , 2012 .