Topology of sobolev mappings, II

This paper addresses some topological and analytical issues concern- ing Sobolev mappings between compact Riemannian manifolds. Among the results we obtained are unified proofs of various generalizations of results obtained in a recent work of Brezis and Li. In particular we solved two conjectures in (BL). We also give a topological obstruction for the weak sequential density of smooth maps in a given Sobolev mapping space. Finally we show a necessary and suf- ficient topological condition under which the smooth maps are strongly dense in the Sobolev spaces. The earlier result, Theorem 1 of (B2), was shown to be not correct.

[1]  Brian White,et al.  Homotopy classes in Sobolev spaces and the existence of energy minimizing maps , 1988 .

[2]  H. Brezis,et al.  Degree theory and BMO; part II: Compact manifolds with boundaries , 1995 .

[3]  H. Brezis,et al.  Degree theory and BMO; part I: Compact manifolds without boundaries , 1995 .

[4]  Stephen Weingram,et al.  The Topology of CW Complexes , 1969 .

[5]  H. Whitney Geometric Integration Theory , 1957 .

[6]  Fengbo Hang Density problems for W1,1 (M, N) , 2002 .

[7]  H. Grosser Chicago , 1906 .

[8]  F. W. Warner Foundations of Differentiable Manifolds and Lie Groups , 1971 .

[9]  F. Lin,et al.  Topology of Sobolev mappings III , 2003 .

[10]  Brian White,et al.  Infima of energy functionals in homotopy classes of mappings , 1986 .

[11]  Fanghua Lin,et al.  Topology of Sobolev mappings , 2001 .

[12]  Paul A. Pearce,et al.  Yang-Baxter equations, conformal invariance and integrability in statistical mechanics and field theory : proceedings of a conference : Centre for Mathematical Analysis, Australian National University, Canberra, Australia, July 10-14, 1989 , 1990 .

[13]  J. Munkres Elementary differential topology : lectures given at Massachusetts Institute of Technology, fall, 1961 , 1963 .

[14]  M. Giaquinta Cartesian currents in the calculus of variations , 1983 .

[15]  James R. Munkres,et al.  Elementary Differential Topology. (AM-54) , 1963 .

[16]  P. Hajłasz Approximation of Sobolev mappings , 1994 .

[17]  F. Béthuel,et al.  A characterization of maps in $H^1 (B^3, S^2)$ which can be approximated by smooth maps , 1990 .

[18]  M. R. Pakzad,et al.  Weak density of smooth maps for the Dirichlet energy between manifolds , 2003 .

[19]  Jean-Michel Coron,et al.  Relaxed Energies for Harmonic Maps , 1990 .

[20]  L. Evans Measure theory and fine properties of functions , 1992 .

[21]  H. Schubert,et al.  O. D. Kellogg, Foundations of Potential Theory. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 31). X + 384 S. m. 30 Fig. Berlin/Heidelberg/New York 1967. Springer‐Verlag. Preis geb. DM 32,– , 1969 .

[22]  R. Hardt,et al.  Connecting topological Hopf singularities , 2003 .

[23]  David Swanson,et al.  The co-area formula for Sobolev mappings , 2001 .

[24]  G. Whitehead,et al.  Elements of Homotopy Theory , 1978 .

[25]  Leon Simon,et al.  Lectures on Geometric Measure Theory , 1984 .

[26]  F. Béthuel,et al.  The approximation problem for Sobolev maps between two manifolds , 1991 .

[27]  May,et al.  A Concise Course in Algebraic Topology , 1999 .

[28]  Jean-Michel Coron,et al.  A Cohomological Criterion for Density of Smooth Maps in Sobolev Spaces Between Two Manifolds , 1991 .

[29]  H. Fédérer Geometric Measure Theory , 1969 .

[30]  Francis E. Burstall Harmonic Maps of Finite Energy From Non-Compact Manifolds , 1984 .

[31]  James W. Vick,et al.  Homology Theory: An Introduction to Algebraic Topology , 1973 .