Auger recombination in strained SixGe1−x/Si superlattices

Abstract A full scale microscopic calculation of Auger rates is performed on Si x Ge 1− x /Si superlattice structures with widely different parameters. We show that Auger rates are reasonably independent of superlattice parameters with Auger rates of some two orders of magnitude larger than that of bulk silicon. Bandstructure is found to be the dominant factor in the calculation and a simple geometrical model is devised to investigate different types of structure.

[1]  A Haug Auger recombination in quantum well semiconductors : calculation with realistic energy bands , 1992 .

[2]  M. Takeshima Auger recombination in InAs, GaSb, InP, and GaAs , 1972 .

[3]  Kang L. Wang,et al.  Normal incidence infrared detector using intervalence‐subband transitions in Si1−xGex/Si quantum wells , 1992 .

[4]  Jaros,et al.  Absorption in p-type Si-SiGe strained quantum-well structures. , 1994, Physical review. B, Condensed matter.

[5]  Kiyoyuki Yokoyama,et al.  Explanation for the temperature insensitivity of the Auger recombination rates in 1.55 μm InP‐based strained‐layer quantum‐well lasers , 1995 .

[6]  Neil T. Gordon,et al.  Uncooled InSb/In1−xAlxSb mid‐infrared emitter , 1994 .

[7]  Eli Yablonovitch,et al.  Reduction of lasing threshold current density by the lowering of valence band effective mass , 1986 .

[8]  Christoph H. Grein,et al.  Minority carrier lifetimes in ideal InGaSb/InAs superlattices , 1992 .

[9]  Hybertsen,et al.  Local empirical pseudopotential approach to the optical properties of Si/Ge superlattices. , 1989, Physical review. B, Condensed matter.

[10]  H. Presting,et al.  Optical spectra and recombination in Si–Ge heterostructures , 1997 .

[11]  C. Bethea,et al.  Broadband (8-14 μm), normal incidence, pseudomorphic GexSi1-x/Si strained-layer infrared photodetector operating between 20 and 77 K , 1992 .

[12]  A. Morita,et al.  Shallow Donor Potential in Silicon , 1966 .

[13]  A. Andreev,et al.  THEORETICAL STUDY OF THRESHOLDLESS AUGER RECOMBINATION IN COMPRESSIVELY STRAINED INALASSB/GASB QUANTUM WELLS , 1997 .

[14]  Electronic band structure of far-infrared Ga1-xInxSb/InAs superlattices , 1993 .

[15]  Carl R. Pidgeon,et al.  Suppression of Auger recombination in arsenic‐rich InAs1−xSbx strained layer superlattices , 1996 .

[16]  Jerry R. Meyer,et al.  AUGER LIFETIME ENHANCEMENT IN INAS-GA1-XINXSB SUPERLATTICES , 1994 .

[17]  P. Landsberg,et al.  Recombination in semiconductors , 2003, Nature.

[18]  Wong,et al.  Electronic structure of GaAs-Ga1-xAlxAs quantum well and sawtooth superlattices. , 1985, Physical review. B, Condensed matter.

[19]  Pan Reduction of the Auger rate in semiconductor quantum dots. , 1992, Physical review. B, Condensed matter.

[20]  Martin,et al.  Theoretical calculations of heterojunction discontinuities in the Si/Ge system. , 1986, Physical review. B, Condensed matter.

[21]  J. Leburton,et al.  Intersubband mid-infrared emission in optically pumped quantum wells , 1996 .

[22]  A. R. Adams,et al.  Band-structure engineering for low-threshold high-efficiency semiconductor lasers , 1986 .

[23]  C. T. Foxon,et al.  Photoluminescence and Raman scattering from GaN layers grown on GaAs and GaP substrates , 1995 .

[24]  Kang L. Wang,et al.  Intervalence‐subband transition in SiGe/Si multiple quantum wells−normal incident detection , 1992 .